K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

ta có : \(2A+3B=0\) \(\Leftrightarrow2.\dfrac{5}{2m+1}+3.\dfrac{4}{2m-1}=0\)

\(\Leftrightarrow\dfrac{10}{2m+1}+\dfrac{12}{2m-1}=0\Leftrightarrow\dfrac{10\left(2m-1\right)+12\left(2m+1\right)}{\left(2m-1\right)\left(2m+1\right)}=0\)

\(\Rightarrow10\left(2m-1\right)+12\left(2m+1\right)=0\Leftrightarrow20m-10+24m+12=0\)

\(\Leftrightarrow44m+2=0\Leftrightarrow44m=-2\Leftrightarrow m=\dfrac{-2}{44}=\dfrac{-1}{22}\) vậy \(m=\dfrac{-1}{22}\)

17 tháng 8 2017

DƯƠNG PHAN KHÁNH DƯƠNG :

cái này cũng tương tự thôi

ta có : \(AB=\dfrac{5}{2m+1}.\dfrac{4}{2m-1}=\dfrac{5.4}{\left(2m+1\right)\left(2m-1\right)}\)

\(A+B=\dfrac{5}{2m+1}+\dfrac{4}{2m-1}=\dfrac{5\left(2m-1\right)+4\left(2m+1\right)}{\left(2m+1\right)\left(2m-1\right)}\)

\(\Rightarrow AB=A+B\Leftrightarrow\dfrac{5.4}{\left(2m+1\right)\left(2m-1\right)}=\dfrac{5\left(2m-1\right)+4\left(2m+1\right)}{\left(2m+1\right)\left(2m-1\right)}\)

\(\Leftrightarrow5.4=5\left(2m-1\right)+4\left(2m+1\right)\Leftrightarrow20=10m-5+8m+4\)

\(\Leftrightarrow20=18m-1\Leftrightarrow18m=20+1=21\Leftrightarrow m=\dfrac{21}{18}=\dfrac{7}{6}\)

vậy \(m=\dfrac{7}{6}\)

7 tháng 1 2021

Giải

a, 2A+3B=0 <=> \(\dfrac{10}{2m+1}+\dfrac{12}{2m-1}=0\)

<=>10(2m-1)+ 12(2m+1) =0

<=> 44m +2 =0 

<=> m=-1/22

b, AB= A+B <=> \(\dfrac{20}{\left(2m-1\right)\left(2m+1\right)}=\dfrac{5}{2m+1}+\dfrac{4}{2m-1}\)

<=> 20 = 5(2m -1) + 4(2m+1) 

<=> 20 = 18m - 1

<=> m=7/6

17 tháng 8 2017

a) ta có : \(2A+3B=0\) \(\Leftrightarrow2.\dfrac{5}{2m+1}+3.\dfrac{4}{2m-1}=0\)

\(\Leftrightarrow\dfrac{10}{2m+1}+\dfrac{12}{2m-1}=0\Leftrightarrow\dfrac{10\left(2m-1\right)+12\left(2m+1\right)}{\left(2m+1\right)\left(2m-1\right)}=0\)

\(\Leftrightarrow\dfrac{20m-10+24m+12}{4m^2-1}=0\Leftrightarrow\dfrac{44m+2}{4m^2-1}=0\)

\(\Leftrightarrow44m+2=0\Leftrightarrow44m=-2\Leftrightarrow m=\dfrac{-2}{44}=\dfrac{-1}{22}\) vậy \(m=\dfrac{-1}{22}\)

b) ta có : \(AB=\dfrac{5}{2m+1}.\dfrac{4}{2m-1}=\dfrac{5.4}{\left(2m+1\right)\left(2m-1\right)}\)

ta có : \(A+B=\dfrac{5}{2m+1}+\dfrac{4}{2m-1}=\dfrac{5\left(2m-1\right)+4\left(2m+1\right)}{\left(2m+1\right)\left(2m-1\right)}\)

\(\Rightarrow AB=A+B\Leftrightarrow\dfrac{5.4}{\left(2m+1\right)\left(2m-1\right)}=\dfrac{5\left(2m-1\right)+4\left(2m+1\right)}{\left(2m+1\right)\left(2m-1\right)}\)

\(\Leftrightarrow5.4=5\left(2m-1\right)+4\left(2m+1\right)\Leftrightarrow20=10m-5+8m+4\)

\(\Leftrightarrow20=18m-1\Leftrightarrow18m=20+1=21\Leftrightarrow m=\dfrac{21}{18}=\dfrac{7}{6}\) vậy \(m=\dfrac{7}{6}\)

4 tháng 5 2017

bài 1:

a) 4n+4+3n-6<19

<=> 7n-2<19

<=> 7n<21 <=> n< 3

b) n\(^2\) - 6n + 9 - n\(^2\) + 16\(\leq\)43

-6n+25\(\leq\)43

-6n\(\leq\)18

n\(\geq\)-3

19 tháng 7 2017

bài 1 ở chỗ nào vậy

7 tháng 10 2018


⇔ 10(2m – 1) + 12(2m + 1) = 0

⇔ 20m – 10 + 24m + 12 = 0

⇔ 44m + 2 = 0

⇔ m = - 1/22 (thỏa)

Vậy m = - 1/22 thì 2A + 3B = 0.

2 tháng 12 2017

Bài 3:

\(\dfrac{a}{b}=\dfrac{3}{10}\)

=>3a=10b

=>\(a=\dfrac{10b}{3}\)

Do đó:\(B=\dfrac{4a\left(4a-10b\right)}{4a\left(2a-6b\right)}=\dfrac{a+3a-10b}{\dfrac{2.10b-18b}{3}}=\dfrac{a}{\dfrac{2}{3}b}=\dfrac{3a}{2b}\)

\(=\dfrac{\dfrac{3.10b}{3}}{2b}=\dfrac{10b}{2b}=5\)

2 tháng 12 2017

bài 3 : a, cho \(3a^2+3b^2=10ab\) và b>a>0. tính gt biểu thức A= \(\dfrac{a-b}{a+b}\)

\(3a^2+3b^2=10ab\)

\(\Rightarrow3a^2-10ab+3b^2=0\)

\(\Rightarrow3a^2-9ab-ab+3b^2=0\)

\(\Rightarrow\left(3a^2-9ab\right)-\left(ab-3b^2\right)=0\)

\(\Rightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)

\(\Rightarrow\left(a-3b\right)\left(3a-b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a-3b=0\\3a-b=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=3b\left(loai\right)\\a=\dfrac{b}{3}\end{matrix}\right.\)

a= 3b loại vì b > a > 0

Thay \(a=\dfrac{b}{3}\) vào biểu thức A ,có :

\(\dfrac{\dfrac{b}{3}-b}{\dfrac{b}{3}+b}=\dfrac{\dfrac{b-3b}{3}}{\dfrac{b+3b}{3}}=\dfrac{b-3b}{3}.\dfrac{3}{b+3b}=\dfrac{-2b}{4b}=-\dfrac{1}{2}\)

Vậy A =-1/2

b, tương tự tìm a theo b rồi thay vào biểu thức

Nếu bn ko lm đc thì bảo mk nha

3 tháng 8 2018

Áp dụng BĐT: \(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\) ( Câu hỏi của ZoZ - Kudo vs Conan - ZoZ - Toán lớp 9 | Học trực tuyến)

\(\Rightarrow\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

Áp dụng vào, ta có:

\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{ab}{9}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{2b}\right)\)\(\dfrac{bc}{b+3c+2a}=\dfrac{bc}{\left(a+c\right)+\left(a+b\right)+2c}\le\dfrac{9}{bc}\left(\dfrac{1}{a+c}+\dfrac{1}{a+b}+\dfrac{1}{2c}\right)\)\(\dfrac{ca}{c+3a+2b}=\dfrac{ca}{\left(c+b\right)+\left(b+a\right)+2a}\le\dfrac{ca}{9}\left(\dfrac{1}{c+b}+\dfrac{1}{b+a}+\dfrac{1}{2a}\right)\)

Cộng vế theo vế BĐT, ta được:

\(P\le\dfrac{1}{9}\left(\dfrac{bc+ac}{a+b}+\dfrac{bc+ab}{a+c}+\dfrac{ab+ac}{b+c}\right)+\dfrac{1}{18}\left(a+b+c\right)\)

\(P\le\dfrac{1}{9}\left[\dfrac{c\left(a+b\right)}{a+b}+\dfrac{b\left(c+a\right)}{a+c}+\dfrac{a\left(b+c\right)}{b+c}\right]+\dfrac{1}{18}\left(a+b+c\right)\)

\(P\le\dfrac{1}{9}\left(a+b+c\right)+\dfrac{1}{18}\left(a+b+c\right)\)

\(P\le\dfrac{1}{6}\left(a+b+c\right)\) \(=\dfrac{1}{6}.6=1\)

\(\Rightarrow Max_P=1\Leftrightarrow a=b=c=2\)

28 tháng 11 2022

Bài 1:

a^2-5ab-6b^2=0

=>a^2-6ab+ab-6b^2=0

=>a*(a-6b)+b(a-6b)=0

=>(a-6b)(a+b)=0

=>a=-b hoặc a=6b

TH1: a=-b

\(A=\dfrac{-2b-b}{-3b-b}+\dfrac{5b+b}{-3b+b}=\dfrac{-3}{-4}+\dfrac{6}{-2}=\dfrac{3}{4}-3=-\dfrac{9}{4}\)

TH2: a=6b

\(A=\dfrac{12b-b}{18b-b}+\dfrac{5b-6b}{18b+b}=\dfrac{11}{17}+\dfrac{-1}{19}=\dfrac{192}{323}\)