Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}\Rightarrow1-\frac{b}{a}=1-\frac{d}{c}\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\)
1: Ta có: \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\) và a-b+c=75
Áp dụng t/c của dãy tỉ số bằng nhau, ta được
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a-b+c}{3-5+7}=\frac{75}{5}=15\)
Do đó, ta được
\(\left\{{}\begin{matrix}\frac{a}{3}=15\\\frac{b}{5}=15\\\frac{c}{7}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=45\\b=75\\c=105\end{matrix}\right.\)
Vậy: a=45; b=75; c=105
2)
Ta có: \(\frac{a}{b}=\frac{3}{5}\)
\(\Rightarrow\frac{a}{3}=\frac{b}{5}\)
\(\Rightarrow\frac{a}{12}=\frac{b}{20}\)(1)
Ta có: \(\frac{b}{c}=\frac{4}{7}\)
\(\Rightarrow\frac{b}{4}=\frac{c}{7}\)
\(\Rightarrow\frac{b}{20}=\frac{c}{35}\)(2)
Từ (1) và (2) suy ra \(\frac{a}{12}=\frac{b}{20}=\frac{c}{35}\)
Ta có: \(\frac{a}{12}=\frac{b}{20}=\frac{c}{35}\) và a+b-c=9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được
\(\frac{a}{12}=\frac{b}{20}=\frac{c}{35}=\frac{a+b-c}{12+20-35}=\frac{9}{-3}=-3\)
Do đó, ta có
\(\left\{{}\begin{matrix}\frac{a}{12}=-3\\\frac{b}{20}=-3\\\frac{c}{35}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-36\\b=-60\\c=-105\end{matrix}\right.\)
Vậy: a=-36; b=-60; c=-105
3) Ta có: 5a=3b
\(\Rightarrow\frac{a}{3}=\frac{b}{5}\)
Ta có: \(\frac{a}{3}=\frac{b}{5}\)và a+b=32
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được
\(\frac{a}{3}=\frac{b}{5}=\frac{a+b}{3+5}=\frac{32}{8}=4\)
Do đó, ta có:
\(\left\{{}\begin{matrix}\frac{a}{3}=4\\\frac{b}{5}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=12\\b=20\end{matrix}\right.\)
Vậy: a=12; b=20
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra: a = kb
c = kd
Do đó: \(\frac{a\cdot c}{b\cdot d}=\frac{kb\cdot kd}{b\cdot d}=\frac{k^2\cdot\left(b\cdot d\right)}{b\cdot d}=k^{2\left(1\right)}\)
\(\frac{a^2-c^2}{b^2-d^2}=\frac{\left(kb\right)^2-\left(kd\right)^2}{b^2-d^2}=\frac{k^2b^2-k^2d^2}{b^2-d^2}=\frac{k^2\left(b^2-d^2\right)}{b^2-d^2}=k^2^{\left(2\right)}\)
Từ (1) và (2) suy ra \(\frac{a\cdot c}{b\cdot d}=\frac{a^2-c^2}{b^2-d^2}\left(đpcm\right)\)
Ta có : 2a=5b=3c
\(=>\frac{2a}{30}=\frac{5b}{30}=\frac{3c}{30}=\frac{a}{15}=\frac{b}{6}=\frac{c}{10}\)
Áp dụng tc dãy tỉ số bằng nhau ta có : \(\frac{a}{15}=\frac{b}{6}=\frac{c}{10}=\frac{a+b-c}{15+6-10}=\frac{44}{11}=4\)
Từ a/15=4 =>a=60
Từ b/6=4 => b=24
Từ c/10=4 => c=40