Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$1< a< b\Rightarrow a-b<0, b>0$
$\Rightarrow \frac{a-b}{b}<0\Rightarrow \frac{a}{b}<1$
Lại có:
$a>1; b<10\Rightarrow \frac{a}{b}> \frac{1}{10}$
Ta có đpcm.
a < b + c < a + 1 => 0 < b + c < 1 mà b < c => b + c < 2c
=> 0 < 2c => c > 0 mà b + c < 1 nên b < 1 - c < 1 mà a > 1 nên b < a
Bài 2:
Ta chứng minh \(\left|a+b\right|\le\left|a\right|+\left|b\right|\) (*) :
Bình phương 2 vế của (*) ta có:
\(\left(\left|a+b\right|\right)^2\le\left(\left|a\right|+\left|b\right|\right)^2\)
\(\Leftrightarrow a^2+b^2+2ab\le a^2+b^2+2\left|ab\right|\)
\(\Leftrightarrow ab\le\left|ab\right|\) (luôn đúng)
Áp dụng (*) vào bài toán ta có:
\(\left|a-c\right|\le\left|a-b+b-c\right|=\left|a-c\right|\) (luôn đúng)
Ta có: \(\left|a-c\right|< 3\); \(\left|b-c\right|< 2\)
\(\Rightarrow\left|a-c\right|+\left|b-c\right|< 3+2=5\)(1)
mà \(\left|a-c\right|+\left|b-c\right|=\left|a-c\right|+\left|c-b\right|\ge\left|a-c+c-b\right|=\left|a-b\right|\)(2)
Từ (1) và (2) \(\Rightarrow\left|a-b\right|\le\left|a-c\right|+\left|b-c\right|< 5\)
hay \(\left|a-b\right|< 5\)( đpcm )
Bài làm:
Ta có: \(\hept{\begin{cases}\left|a-c\right|< 3\\\left|b-c\right|< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|a-c\right|< 3\\\left|c-b\right|< 2\end{cases}}\)
=> \(\left|a-c\right|+\left|c-b\right|< 3+2=5\) (1)
Áp dụng công thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
=> \(\left|a-c\right|+\left|c-b\right|\ge\left|a-c+c-b\right|=\left|a-b\right|\) (2)
Từ (1) và (2) => \(\left|a-b\right|< 5\)
Do \(\frac{a}{b}< \frac{c}{d}\)
=> \(a.d< b.c\)
=> \(a.d+a.b< b.c+a.b\)
=> \(a.\left(b+d\right)< b.\left(a+c\right)\)
=> \(\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
Do \(\frac{a}{b}< \frac{c}{d}\)
=> \(a.d< b.c\)
=> \(a.d+c.d< b.c+c.d\)
=> \(d.\left(a+c\right)< c.\left(b+d\right)\)
=> \(\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
Từ (1) và (2) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\left(đpcm\right)\)