Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left|a\right|\le1;\left|b-1\right|\le2\)
\(=>\left|a\right|\cdot\left|b-1\right|=\left|ab-a\right|\le2\)
Áp dụng BĐT \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\) ta có:
\(\left|a-c+ab-a\right|\le\left|a-c\right|+\left|ab-a\right|=2+3=5\)
\(=>\left|ab-c\right|\le5\)
Ta có:
\(\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\) vì a,b,c nguyên dương
\(\Rightarrow\left\{{}\begin{matrix}3a=a+2b\\3b=b+2c\\3c=c+2a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2a=2b\\2b=2c\\2c=2a\end{matrix}\right.\)
\(\Rightarrow a=b=c\Rightarrow a+b+c=3a⋮3\left(đpcm\right)\)
Vì vai trò của a, b, c, d như nhau nên giả sử \(a\le b\le c\le d\)
\(\Rightarrow a^2\le b^2\le c^2\le d^2\)
\(\Rightarrow\frac{1}{a^2}\ge\frac{1}{b^2}\ge\frac{1}{c^2}\ge\frac{1}{d^2}\)
\(\Rightarrow4.\frac{1}{a^2}\ge\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}\)
\(\Rightarrow\frac{4}{a^2}\ge1\Rightarrow a^2\le4\)
\(\Rightarrow a\le2\)
TH1: \(a=1\)
⇒Không có b, c, d thỏa mãn đề bài.
TH2: \(a=2\)
\(\Rightarrow a=b=c=d=2\) thỏa mãn đề bài
Vậy
\(a=b=c=d=2\) thỏa mãn đề bàiBài 1:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
sửa đề \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)
Theo tính chất dãy tỉ số bằng nhau ta có
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b+\left(a-a\right)+\left(c-c\right)}{2b+\left(a-a\right)+\left(-c+c\right)}=\frac{2b}{2b}=1\)
\(\frac{a+b+c}{a+b-c}=1\Leftrightarrow a+b+c=a+b-c\Leftrightarrow c=-c\Leftrightarrow c-\left(-c\right)=0\Leftrightarrow2c=0\Leftrightarrow c=0\)
Vậy c=0
Câu hỏi của nguyen thanh chuc - Toán lớp 7 - Học toán với OnlineMath