K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2017

2.

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{n^2}\\ =\dfrac{1}{2.2}+\dfrac{1}{3.3}+....+\dfrac{1}{n.n}\\ < \dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{\left(n-1\right).n}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\)

24 tháng 12 2017

You k làm đc bài 1 ak -_- làm full cho người ta đi chớ :v

\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

\(\Rightarrow\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{a+b}{ab}\right)\)

\(\Rightarrow\dfrac{1}{c}=\dfrac{a+b}{2ab}\)

\(\Rightarrow ac+bc=2ab\)

\(\Rightarrow ac+bc-ab=ab\)

\(\Rightarrow ac-ab=ab-bc\)

\(\Rightarrow a\left(c-b\right)=b\left(a-c\right)\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\left(đpcm\right)\)

16 tháng 7 2016

mình không biết

11 tháng 7 2017

hk bik

16 tháng 7 2019

2. Ta có:

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(\left(3^n.9+3^n\right)-\left(2^{n-1}.8+2^{n-1}.2\right)\)

\(3^n\left(9+1\right)-2^{n-1}\left(8+2\right)\)

\(3^n.10-2^{n-1}.10\)

\(\left(3^n-2^{n-1}\right).10⋮10\forall n\)

Vậy \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)

8 tháng 1 2016

Bài 1 rõ thế còn gì.