Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Conan Kudo - Toán lớp 8 - Học toán với OnlineMath
Bạn tham khảo link trên!
từ giả thiết ta có
\(\frac{1}{bc-a^2}=\frac{1}{b^2-ca}+\frac{1}{c^2-ab}=\frac{c^2-ab+b^2-ca}{\left(b^2-ca\right)\left(c^2-ab\right)}\)
Nhân hai vế với \(\frac{a}{bc-a^2}\) ta có:
\(\frac{a}{\left(bc-a^2\right)^2}=\frac{ac^2-a^2b+ab^2-ca^2}{\left(bc-a^2\right)\left(b^2-ca\right)\left(c^2-ab\right)}\)
làm tương tự với hai số hạng còn lại ta được:
\(\frac{b}{\left(ca-b^2\right)^2}=\frac{bc^2-ab^2+a^2b-b^2c}{\left(bc-a^2\right)\left(b^2-ca\right)\left(c^2-ab\right)}\);\(\frac{c}{\left(ab-c^2\right)^2}=\frac{b^2c-c^2a+a^2c-bc^2}{\left(bc-a^2\right)\left(b^2-ca\right)\left(c^2-ab\right)}\)
cộng ba vế của đẳng thức trên ta được kq là 0
cách kia dài quá
Đặt \(x=bc-a^2;y=ac-b^2;z=ab-c^2\)
Suy ra cần chứng minh \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) thì \(\frac{a}{x^2}+\frac{b}{y^2}+\frac{c}{z^2}=0\)
Xét \(T=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\).....
nguyễn tuấn anh bài này có 2 cách nhé:
Cách I:
Ta có:
bc/a²+ac/b²+ ab/c²=abc/a³+abc/b³+abc/c³
=abc(1/a³ + 1/b³ + 1/c³)
=abc[(1/a + 1/b + 1/c)(1/a² + 1/b²+ 1/c²-1/ab-1/bc-1/ca)+3/abc](áp dụng HĐt trên)
=abc.3/(abc)=3
Cách II:
Từ giả thiết suy ra:
(1/a +1/b)³=-1/c³
=>1/a³+1/b³+1/c³=-3.1/a.1/b(1/a+1/b)=3...
=>bc/a²+ac/b²+ ab/c²=abc/a³+abc/b³+abc/c³
=abc(1/a³ + 1/b³ + 1/c³)
=abc.3/(abc)=3
Bài 1:
a ) a.( b2 + c2 ) + b.( a2 + c2 ) + c.( a2 + b2 ) + 2abc
= ab2 + ac2 + a2b + bc2 + a2c + b2c + 2abc
= ( ab2 + a2b ) + ( ac2 + bc2 ) + ( a2c + 2abc + b2c )
= ab.( a + b ) + c2.( a + b ) + c.( a2 + 2ab + b2 )
= ab.( a + b ) + c2.( a + b )v + c.( a + b)2
= ( a + b ).[ ( ab + c2 + c. ( a + b ) ]
= ( a + b ).( ab + c2 + ac + bc )
= ( a + b ).[ ( ab + ac ) + ( c2 + bc) ]
= ( a + b ).[ a.( b + c ) + c.( b + c ) ]
= ( a + b ).( b + c ).( a + c )
b) ab.( a + b ) - bc.( b + c ) + ac.( a - c )
= ab.( a + b ) - bc.( b + c ) + ac.[ ( a + b ) - ( b + c ) ]
= ab.( a + b ) - bc. ( b + c ) + ac.( a + b ) - ac.( b + c )
= ab.( a + b ) + ac.( a + b ) - bc.( b + c ) - ac.( b + c )
= ( a + b ).( ab + ac ) + ( b + c ).( -bc - ac )
= ( a + b ).a.( b + c ) - ( b + c ).c.( a + b )
= ( a + b ).( b + c ).( a - c )
c) ( x2 + x )2 + 2.( x2 + x ) - 3
Đặt x2 + x = a
Khi đó đa thức trở thành:
a2 + 2a - 3
= a2 + 3a - a - 3
= a.( a + 3 ) - ( a + 3 )
= ( a - 1 ).( a - 3 )
\(\Rightarrow\) ( x2 + x - 1 ).( x2 + x - 3 )
B2
ab.( a - b ) + bc.( b - c ) + ca.( c - a ) = 0
\(\Leftrightarrow\)ab.( a - b ) + bc.( b - c ) - ca.[ ( a - b ) + ( b - c ) ] = 0
\(\Leftrightarrow\)ab.( a - b ) + bc.( b - c ) - ca.( a - b ) - ca.( b - c ) = 0
\(\Leftrightarrow\)ab.( a - b ) - ca.( a - b ) + bc.( b - c ) - ca.( b - c ) = 0
\(\Leftrightarrow\) ( a - b ).( ab - ca ) + ( b - c ).( bc - ca ) = 0
\(\Leftrightarrow\) ( a - b ).a.( b - c ) - ( b - c ).c.( a - b ) = 0
\(\Leftrightarrow\) ( a - b ).( b - c ).( a - c ) = 0
\(\Leftrightarrow\) ( a - b ).( b - c ).( a - c ) = 0
\(\Leftrightarrow\) a = b , b = c , a = c
\(\Rightarrow\) a = b = c
Bạn ơi hình như phân thức cuối cùng bạn bị sai bạn thử xem lại đi nha!
Ta có :a+b+c=0
a+b=-c
(a+b)2=(-c)2
a2+b2+2ab=c2
a2+b2-c2+2ab=0
\(\Rightarrow\)a2+b2-c2=-2ab (1)
Tương tự như trên , nên ta có :
b2+c2-a2=-2ab (2)
c2+b2-a2=-2cb (3)
Ta thay (1) , (2) và (3) , vào phân thức trên , ta có :
\(\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2cb}\)
\(=-\frac{1}{2}+-\frac{1}{2}+-\frac{1}{2}\)
\(=-\frac{3}{2}\)