K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

bình phương (1/a+1/b+1/c) rồi áp dụng HĐT tính bình thường

7 tháng 10 2020

hem biet

6 tháng 10 2020

b) Ta có: \(a+b-c=0\)

\(\Leftrightarrow a+b=c\)

\(\Leftrightarrow\left(a+b\right)^3=c^3\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-c^3=0\)

\(\Leftrightarrow a^3+b^3-c^3=-3ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3-c^3=-3abc\)

=> đpcm

29 tháng 6 2016

a^3 +b^3 +c^3 =3abc 

<=> (a + b + c)(a² + b² + c² - ab - bc - ca) = 0 
Hoặc a + b + c = 0 
Hoặc (a² + b² + c² - ab - bc - ca) = 0 
TH1: a + b + c = 0 => a = -(b + c); b = -( a + c); c = -( a + b) 
=> A = [1 - (b +c)/b][1 - (a + c)/c][1 - (a + b)/a] 
=> A =[1 - 1 - c/b][1 - 1 - a/c][1 - 1 - b/a] 
=> A = (-c/b)(-a/c)(-b/a) = -1 
TH2: (a² + b² + c² - ab - bc - ca) = 0 <=> (a - b)² +(b - c)² + (c - a)² = 0 
=> a - b = b - c = c - a = 0 hay a = b = c 
=> A = (1 + 1)(1 + 1)(1+ 1) = 8

29 tháng 9 2018

\(1)\)

\(a)\)\(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(A=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(A=100+99+98+97+...+2+1\)

\(A=\frac{100\left(100+1\right)}{2}\)

\(A=5050\)

\(b)\)\(B=3\left(2^2+1\right)\left(2^4+1\right).....\left(2^{64}+1\right)+1\)

\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right).....\left(2^{64}+1\right)+1\)

\(B=\left(2^4-1\right)\left(2^4+1\right).....\left(2^{64}+1\right)+1\)

\(B=\left(2^8+1\right).....\left(2^{64}+1\right)+1\)

\(............\)

\(B=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)

\(B=2^{128}-1+1\)

\(B=2^{128}\)

Chúc bạn học tốt ~ 

29 tháng 9 2018

\(1)\)

\(c)\)\(C=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)

\(C=\left(a+b\right)^2+2\left(a+b\right)c+c^2+\left(a+b\right)^2-2\left(a+b\right)c+c^2-2\left(a+b\right)^2\)

\(C=2\left(a+b\right)^2+2c^2-2\left(a+b\right)^2\)

\(C=2c^2\)

\(2)\)

\(a)\)\(VP=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(VP=a^3+3a^2b+3ab^2+b^3-3ab\left(a+b\right)\)

\(VP=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)\)

\(VP=a^3+b^3=VT\) ( đpcm ) 

\(b)\)\(VT=a^3+b^3+c^3-3abc\)

\(VT=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(VT=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(VT=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(VT=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\) ( đpcm ) 

Từ đó suy ra : 

\(i)\)\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)\(\Rightarrow\)\(a+b+c=0\)

Hoặc \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)

Chúc bạn học tốt ~ 

15 tháng 12 2016

1) Có: \(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=-c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3-3abc=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

2)Có: \(a+b-c=0\)

\(\Leftrightarrow a+b=c\)

\(\Leftrightarrow\left(a+b\right)^3=c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=c^3\)

\(\Leftrightarrow a^3+b^3+3abc=c^3\)

\(\Leftrightarrow a^3+b^3-c^3=-3abc\)

 

15 tháng 12 2016

one piece

18 tháng 12 2016

Em mong cac ban giup cau 2 thoi cung duoc a

23 tháng 8 2019

Đề<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=6abc

<=>a^2+b^2+c^2-ab-bc-ca=3abc 

nhân cả hai vế với a+b+c+1 ta đc câu trả lời 

chúc bạn học tốt

cho mình hỏi ai còn cách khác bài bạn cậu chủ họ Lương thì gợi ý giúp mình vs nhé.

tks!

6 tháng 9 2018

 Hãy biến đổi từ: a³ + b³ + c³ = 3abc 
<=> (a + b + c)(a² + b² + c² - ab - bc - ca) = 0 
Hoặc a + b + c = 0 
Hoặc (a² + b² + c² - ab - bc - ca) = 0 
TH1: a + b + c = 0 => a = -(b + c); b = -( a + c); c = -( a + b) 
=> A = [1 - (b +c)/b][1 - (a + c)/c][1 - (a + b)/a] 
=> A =[1 - 1 - c/b][1 - 1 - a/c][1 - 1 - b/a] 
=> A = (-c/b)(-a/c)(-b/a) = -1 
TH2: (a² + b² + c² - ab - bc - ca) = 0 <=> (a - b)² +(b - c)² + (c - a)² = 0 
=> a - b = b - c = c - a = 0 hay a = b = c 
=> A = (1 + 1)(1 + 1)(1+ 1) = 8

đúng ko vậy

1 tháng 11 2021

TL:

=8

-HT-