Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)
\(\Leftrightarrow a^2b+abc+a^2c+b^2a+b^2c+abc+c^2b+c^2a=0\)
\(\Leftrightarrow ab\left(a+b\right)+ac\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(ab+ac+bc+c^2\right)\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
So ez
....
Ta có : \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Đánh giá tương tự , ta cũng có :
\(\frac{b}{1+c^2}\ge b-\frac{bc}{2},\frac{c}{1+a^2}\ge c-\frac{ab}{2}\)
Từ đó suy ra :
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{ab+bc+c}{2}=3-\frac{ab+bc+ca}{2}\)
Mặt khác ,ta biết rằng \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3.\)Từ đây ,kết hợp với đánh giá ở trên ,ta có kết quả cần chứng minh.
\(Ta\)\(có\) \(\frac{a}{1+b^2}\ge a-\frac{ab^2}{1+b^2}\)
Áp dụng bất đẳng thức \(a^2+b^2\ge2ab\)ta có
\(a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Chứng minh tương tụ với \(\frac{b}{1+c^2};\frac{c}{1+a^2}\)ta được
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{ab+bc+ac}{2}\) \(\left(1\right)\)
Mặt khác ta có :
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
\(Hay\)\(3^2\ge3\left(ab+bc+ac\right)\)
\(\Rightarrow ab+bc+ca\le3\)\(\left(2\right)\)
\(Từ\)\(\left(1\right)\)\(\left(2\right)\)\(\Rightarrow\)\(a+b+c-\frac{ab+bc+ac}{2}\)\(\ge3-\frac{3}{2}=\frac{3}{2}\)\(\left(3\right)\)
\(Từ\)\(\left(1\right)\)\(\left(3\right)\)\(\Rightarrow\)\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
\(\left(đpcm\right)\)