Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301
Bài 1: Gọi số cần tìm là a. \(\left(a\in N,a< 400\right)\)
Khi đó ta có a - 1 chia hết cho 2, 3, 4, 5 và 6.
Nói cách khác a - 1 chia hết BCNN(2,3,4,5,6) = 60
Vậy a có dạng 60k + 1.
Do a < 400 nên \(60k+1< 400\Rightarrow k\le6\)
Do a chia hết 7 nên ta suy ra a = 301
Bài 2.
Do số cần tìm không chia hết cho 2 và chia 5 thiếu 1 nên phải có tận cùng là 9.
Số đó lại chia hết cho 7 nên ta tìm được các số là :
7.7 = 49 (Thỏa mãn)
7.17 = 119 (Chia 3 dư 2 - Loại)
7.27 = 189 (Chia hết cho 3 - Loại)
7.37 = 259 ( > 200 - Loại)
Vậy số cần tìm là 49.
a chia cho 4, 5, 6 dư 1 nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n => a = 60n+1 với 1 ≤ n < (400-1)/60 = 6,65
mặt khác a chia hết cho 7 => a = 7m
Vậy 7m = 60n + 1
có 1 chia 7 dư 1
=> 60n chia 7 dư 6
mà 60 chia 7 dư 4
=> n chia 7 dư 5
mà n chỉ lấy từ 1 đến 6 => n = 5
a = 60.5 + 1 = 301
Gọi số có 3 chữ số đó là abc
Theo đề bài ta có:
\(abc:13;7\)(dư 1)
\(abc-1⋮13;7\)
\(abc\in BC\left(13;7\right)\)
\(BCNN\left(13;7\right)=13.7=91\)
Vì \(BC\left(13;7\right)=B\left(91\right)\)
\(B\left(91\right)=\left\{0;91;182;273;.....\right\}\)
Mà abc có 3 chữ số,nhỏ hơn 200
Nên:
\(abc-1=182\)
\(abc=183\)
\(183:8=22\)(dư 7)
Vậy số đó chia 8 dư 7
Câu 8:
Từ 1 - 100 có:
\(\left(100-1\right):1+1=100\) (số)
Trong khoảng từ 1 - 100 ta có:
a) Số lượng số chia hết cho 2 là:
\(\left(100-2\right):2+1=50\) (số)
b) Số lượng số không chia hết cho 2 là:
\(100-50=50\) (số)
c) Số lượng số chia hết cho 5 là:
\(\left(100-5\right):5+1=20\) (số)
d) Số lượng số không chia hết cho 5 là:
\(100-20=80\) (số)
e) Số lượng số chia hết cho 3 là:
\(\left(99-3\right):3+1=33\) (số)
g) Số lượng số không chia hết cho 3 là:
\(100-33=67\) (số)
h) Số lượng số chia hết cho 9 là:
\(\left(99-9\right):9+1=11\) (số)
i) Số lượng số không chia hết cho 9 là:
\(100-11=89\) (số)
Câu 1: Ta có số: \(A=\overline{x036y}\)
A chia 2 dư 1 nên: \(y\in\left\{1;3;5;7;9\right\}\) (1)
A chia 5 dư 1 nên: \(y\in\left\{1;6\right\}\) (2)
Từ (1) và (2) ⇒ y = 1
\(\Rightarrow A=\overline{x0361}\)
Mà A chia 9 dư 1 \(\Rightarrow x+0+3+6+1=18+1\)
\(\Rightarrow x+10=19\)
\(\Rightarrow x=9\)
Vậy: \(A=90361\)
4/ Gọi số HS là a (a thuộc N, 300 < a < 400)
Theo bài, xếp thành 12, 15, 18 hàng đều dư ra 9 HS hay a : 12, 15, 18 dư 9 => (a - 9) chia hết cho 12, 15, 18 => a - 9 là BC(12,15,18)
12 = 2 mũ 2 x 3 ; 15 = 3 x 5 ; 18 = 2 x 3 mũ 2
Thừa số nguyên tố chung và riêng: 2, 3, 5
BCNN(12,15,18) = 2 mũ 2 x 3 mũ 2 x 5 = 180
=> BC(12,15,18) = B(180) = { 0, 180, 360, 540, 720, ... }
=> a - 9 thuộc { 0, 180, 360, 540, 720, ... }
Mà 300 < a < 400 => a - 9 = 360
a = 360 + 9
a = 369