Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(-1\le x,y,z\le2\Leftrightarrow\left(x+1\right)\left(x-2\right)\le0\Leftrightarrow x^2-x-2\le0\left(1\right)\)
Tương tự ta có: \(\hept{\begin{cases}y^2-y-2\le0\left(2\right)\\z^2-z-2\le0\left(3\right)\end{cases}}\)
Cộng từng vế (1)(2)(3) và do x+y+z=0 nên P\(\le6\left(4\right)\)
Từ hệ \(\hept{\begin{cases}\left(x+1\right)\left(x-2\right)=0\\\left(y+1\right)\left(y-2\right)=0\\\left(z+1\right)\left(z-2\right)=0\end{cases}}\)và x+y+z=2
=> trong 3 số x,y,z có một trong 2 số bằng 2 và hai số bằng -1
Vì thế chẳng hạn khi x=2; y=z=-1 (lúc đó x+y+z=0) ta có P=6
Vậy maxP=6
1) Từ \(-2\le a,b,c\le3\) suy ra :
\(\left(a+2\right)\left(a-3\right)\le0\Leftrightarrow a^2-a-6\le0\Leftrightarrow a^2\le a+6\)
\(\left(b+2\right)\left(b-3\right)\le0\Leftrightarrow b^2-b-6\le0\Leftrightarrow b^2\le b+6\)
\(\left(c+2\right)\left(c-3\right)\le0\Leftrightarrow c^2-c-6\le0\Leftrightarrow c^2\le c+6\)
Cộng các bđt trên theo vế ta có đpcm
2) \(P=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{z}\right)=\frac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{xyz}\)
Từ giả thiết : \(x+1=\left(1-y\right)+\left(1-z\right)\ge2\sqrt{\left(1-y\right)\left(1-z\right)}=2\sqrt{\left(x+z\right)\left(x+y\right)}\)
Tương tự : \(y+1\ge2\sqrt{\left(y+x\right)\left(y+z\right)}\) , \(z+1\ge2\sqrt{\left(z+y\right)\left(z+x\right)}\)
\(\Rightarrow\frac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{xyz}\ge\frac{8\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{8.2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{64xyz}{xyz}=64\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y+z=1\\x+y=y+z=z+x\end{cases}\Leftrightarrow}x=y=z=\frac{1}{3}\)
Vậy Min P = 64 tại x = y = z = 1/3
Ta có: a+b+c=1 <=>(a+b+c)2 = 1 <=> ab+bc+ca=0 (1)
Theo dãy tỉ số bằng nhau ta có:
xa=yb=zc=x+y+za+b+c=x+y+z1=x+y+zxa=yb=zc=x+y+za+b+c=x+y+z1=x+y+z
<=> x = a(x+y+z) ; y = b(x+y+z) ; z = c(x+y+z)
=> xy+yz+zx= ab(x+y+z)2+bc(x+y+z)2+ca(x + y + z)2
<=> xy+yz+zx =(ab+bc+ca)(x+y+z)2 (2)
từ (1) và (2) => xy + yz + zx = 0
a) Mình làm lại , mk thiếu dấu
Ta có : y ≤ 1 ⇒ x ≥ xy ( x > 0) ( 1)
Tương tự : y ≥ yz ( y > 0) ( 2) ; z ≥ xz ( z > 0) ( 3)
Cộng từng vế của ( 1 ; 2 ; 3) , ta có :
x + y + z ≥ xy + yz + zx
⇔ x + y + z - xy - yz - xz ≥ 0 ( *)
Lại có : x ≤ 1 ⇒ x - 1 ≤ 0 ( 4)
Tương tự : y - 1 ≤ 0 ( 5) ; z - 1≤ 0 ( 6)
Nhân vế với vế của ( 4 ; 5 ; 6) , ta có :
( x - 1)( y - 1)( z - 1) ≤ 0
⇔ x + y + z - xy - yz - zx + xyz - 1 ≤ 0
⇔ x + y + z - xy - yz - zx ≤ 1 - xyz ( 7)
Do : 0 ≤ x , y , z ≤ 1 ⇒ 0 ≤ xyz ⇒ - xyz ≤ 0 ⇒ 1 - xyz ≤ 1 ( 8)
Từ ( 7;8 ) ⇒ x + y + z - xy - yz - zx ≤ 1 ( **)
Từ ( * ; **) ⇒ đpcm
thêm x2 + y2 + z2 = 1 nha
HT nha vinh
Áp dụng bđt cauchy schwarz dạng engel ta có :
\(VP=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}\le\frac{\left(x+y+z\right)^2}{3}=3\)
Dấu = xảy ra khi và chỉ khi \(x=y=z=1\)
Vậy \(Max_S=3\)khi \(x=y=z=1\)