K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

mà OA=OB

nên OM là đường trung trực của AB

hay OM\(\perp\)AB(1)

b: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

hay BA\(\perp\)AC(2)

Từ (1) và (2) suy ra AC//OM

25 tháng 11 2021

Xét đường tròn (O;R) có A, B \(\in\left(O;R\right)\)\(\Rightarrow OA=OB=R\)

Mà \(R=3cm\left(gt\right)\Rightarrow OA=OB=3cm\)

Vì MA là tiếp tuyến tại A của (O) (gt) \(\Rightarrow MA\perp OA\)tại A \(\Rightarrow\Delta OMA\)vuông tại A

\(\Rightarrow OM^2=OA^2+AM^2\left(đlPytago\right)\)\(\Rightarrow AM^2=OM^2-OA^2\Rightarrow AM=\sqrt{OM^2-OA^2}=\sqrt{5^2-3^2}=\sqrt{25-9}=\sqrt{16}=4\left(cm\right)\)

Xét đường tròn (O) có hai tiếp tuyến tai A và B cắt nhau tại M (gt) \(\Rightarrow MA=MB\)(tính chất hai tiếp tuyến cắt nhau)

Mà \(MA=4cm\left(cmt\right)\Rightarrow MB=4cm\)

Chu vi tứ giác AMBO là \(MA+MB+OA+OB=4+4+3+3=14\left(cm\right)\)

Gọi H là giao điểm của OM và AB.

Ta có \(MA=MB\left(cmt\right)\)\(\Rightarrow\)M nằm trên đường trung trực của AB. (1)

Lại có \(OA=OB\left(=R\right)\)\(\Rightarrow\)O nằm trên đường trung trực của AB. (2)

Từ (1) và (2) \(\Rightarrow\)OM lả đường trung trực của AB. \(\Rightarrow\hept{\begin{cases}AH=BH=\frac{AB}{2}\\AH\perp OM\left(H\in OM\right)\end{cases}}\)

\(\Rightarrow\)AH là đường cao của \(\Delta OMA\)

Xét \(\Delta OMA\)vuông tại A có đường cao AH (cmt) \(\Rightarrow AH.OM=MA.OA\left(htl\right)\)

\(\Rightarrow AH=\frac{MA.OA}{OM}=\frac{4.3}{5}=\frac{12}{5}=2,4\left(cm\right)\)

\(\Rightarrow AB=2AH=2.2,4=4,8\left(cm\right)\)

Xét tiếp \(\Delta OMA\)vuông tại A có đường cao AH \(\Rightarrow MA^2=MH.MO\left(htl\right)\)

\(\Rightarrow MH=\frac{MA^2}{MO}=\frac{4^2}{5}=\frac{16}{5}=3,2\left(cm\right)\)

Diện tích \(\Delta MAB\)là \(S_{MAB}=\frac{1}{2}AB.MH=\frac{1}{2}.4,8.3,2=7,68\left(cm^2\right)\)

Bài 1: 

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay ΔMAB cân tại M

mà \(\widehat{AMB}=60^0\)

nên ΔMBA đều

b: Xét ΔAOM vuông tại A có 

\(AM=OA\cdot\tan30^0\)

nên \(AM=5\sqrt{3}\left(cm\right)\)

\(C_{AMB}=3\cdot AM=15\sqrt{3}\left(cm\right)\)

c: Ta có: MA=MB

nên M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

hay MO⊥AB(1)

Xét (O) có

ΔABC nội tiếp

AC là đường kính

DO đó: ΔABC vuông tại B

Suy ra: AB⊥BC(2)

Từ (1) và (2) suy ra OM//BC

hay BMOC là hình thang

18 tháng 11 2016

c

Gọi H là giao điểm của AB và OM

a, Xét Δv MAO và ΔvMBO

Có MO chung

AO=OB(=bk)

=> ΔvMAO= ΔMBO (ch-cgv)

=> MA=MB

Trong ΔAMB

Có MA=MB(cmt)

=> ΔAMB cân tại M

lại có góc AMB=60 độ

=> ΔAMB là Δ đều

b, Ta có: góc AMO=góc BMO ( ΔvMAO= ΔvMBO)

mà góc AMO+ góc BMO= góc AMB=60 độ

=> góc AMO=\(\frac{1}{2}.60=30^0\)

Áp dụng tỉ số lượng giác

Ta có : tan góc AMO=\(\frac{AO}{AM}\)

tan30=\(\frac{5}{AM}\)

=>AM=\(\frac{5}{tan30}=5\sqrt{3}\)

Chu vi ΔAMB= AM.3=\(5\sqrt{3}.3=15\sqrt{3}\)

c, Ta có OA=OB (=bk)

=> O thuộc đường trung trực AB(1)

MA=MB(cmt)

=> M thuộc đường trung trực AB (2)

Từ (1)(2)=> OM là cả đường trung trực

=> MO vuông góc AB (*)

Ta có: OA=OB=OC(=bk)

=> OB=\(\frac{1}{2}AC\)

mà OB là đường trung tuyến

=> Δ ABC vuông tại B

=> AB vuông góc BC(**)

Từ (*)(**)=> MO//BC

=> BMOC là hình thang

18 tháng 11 2016

Bài 2:

a,

Ta có : góc AQM=90 độ ( MQ vuông góc xy)

góc APM =90 độ ( MP vuông góc AB)

góc QAP=90độ ( xy vuông góc OA)

=> QMPA là hình chữ nhật

b, Trong hình chữ nhật QMPA:

Có : I là trung điểm của đường chéo thứ nhất QP

-> I cũng là trung điểm của đường chéo thứ 2 AM

=> IA=IM

=> OI vuông góc AM tại I ( đường kính đi qua trung điểm => vuông góc ( đ/Lý 3)