K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

mik chịu@@@@@@@@@@@@@@@

28 tháng 11 2016

Ta có

\(C=\left(3-x\right)\left(1-y\right)\left(4x-7y\right)\)

\(\Leftrightarrow28C=\left(12-4x\right)\left(7-7y\right)\left(4x-7y\right)\)

\(\Leftrightarrow3.\sqrt[3]{28C}=3.\sqrt[3]{\left(12-4x\right)\left(7-7y\right)\left(4x-7y\right)}\)

\(\le12-4x+7-7y+4x-7y=19\)

\(\Leftrightarrow\sqrt[3]{28C}\le\frac{19}{3}\)

\(\Leftrightarrow28C\le\frac{19^3}{27}\)

\(\Leftrightarrow C\le\frac{19^3}{27.28}\)

28 tháng 3 2019

\(f\left(x;y\right)=x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\)

\(\Rightarrow\frac{\sqrt{3}}{2}f\left(x;y\right)=\frac{\sqrt{3}}{2}\left(x+y\right)+\frac{1}{2}\left(x\sqrt{3-3y^2}+y\sqrt{3-3x^2}\right)\)

\(\Rightarrow\frac{\sqrt{3}}{2}f\left(x;y\right)\le\frac{\frac{3}{4}+x^2+\frac{3}{4}+y^2}{2}+\frac{1}{2}\left(\frac{-3x^2+y^2+3-3y^2+x^2+3}{2}\right)\)

\(\Rightarrow\frac{\sqrt{3}}{2}f\left(x;y\right)\le\frac{\frac{3}{2}+x^2+y^2-x^2-y^2+3}{2}=\frac{9}{4}\)

\(\Rightarrow f\left(x;y\right)\le\frac{3\sqrt{3}}{2}\)

Dấu "=" khi x = y = \(\frac{\sqrt{3}}{2}\).

#Kaito#

NV
26 tháng 9 2020

\(\frac{4}{3}\ge x^2+y^2+z^2-x-y-z\ge\frac{1}{3}\left(x+y+z\right)^2-\left(x+y+z\right)\)

\(\Rightarrow\left(x+y+z\right)^2-3\left(x+y+z\right)-4\le0\)

\(\Rightarrow\left(x+y+z+1\right)\left(x+y+z-4\right)\le0\)

\(\Rightarrow x+y+z\le4\)

\(A_{max}=4\) ; \(A_{min}\) ko tồn tại (chỉ tồn tại khi x;y;z là số thực bất kì, khi đó \(A_{min}=-1\))