K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

Bạn sửa lại điều kiện thành: 0<x<1 nhé :)

Đặt \(A=\frac{2}{1-x}+\frac{1}{x}\)

Áp dụng dụng bđt Bunhiacopxki, ta có : 

\(A=\left[\left(\sqrt{\frac{2}{1-x}}\right)^2+\left(\sqrt{\frac{1}{x}}\right)^2\right]\left[\left(\sqrt{1-x}\right)^2+\left(\sqrt{x}\right)^2\right]\ge\left[\sqrt{\frac{2}{1-x}.\left(1-x\right)}+\sqrt{\frac{1}{x}.x}\right]^2\)

\(\Rightarrow A\ge\left(\sqrt{2}+1\right)^2=3+2\sqrt{2}\)

Bài này mình có áp dụng một chút phần căn thức lớp 9 :

  • Nếu \(x\ge0\)  thì \(x=\left(\sqrt{x}\right)^2\)
  • \(\sqrt{x}.\sqrt{y}=\sqrt{xy}\)với \(x,y\ge0\)
23 tháng 7 2016

điều kiền phải là : 0 < x < 1 . đặt  \(P=\frac{2}{1-x}+\frac{1}{x}.\)

ta có : \(\frac{2}{1-x}=\frac{2-2x+2x}{1-x}=2+\frac{2x}{1-x}.\);    \(\frac{1}{x}=\frac{x+1-x}{x}=1+\frac{1-x}{x}.\)

\(P=\frac{2}{1-x}+\frac{1}{x}=3+\frac{2x}{1-x}+\frac{1-x}{x}.\left(1\right).\)

Áp dụng BĐT Cô si cho hai số dương \(\frac{2x}{1-x}\)và \(\frac{1-x}{x}.\)ta được : \(\frac{2x}{1-x}+\frac{1-x}{x}\ge2\sqrt{\frac{2x.\left(1-x\right)}{\left(1-x\right).x}}=2\sqrt{2}.\)

Thay vào (1) ta được : \(P\ge3+2\sqrt{2}.\)dấu " =" xẩy ra khi  \(x=\sqrt{2}-1\)

11 tháng 6 2019

1.undefined

AH
Akai Haruma
Giáo viên
31 tháng 3 2018

Bài 3:

Áp dụng BĐT Cauchy cho các số dương ta có:

\(\frac{1}{x}+\frac{x}{4}\geq 2\sqrt{\frac{1}{4}}=1\)

\(\frac{1}{y}+\frac{y}{4}\geq 2\sqrt{\frac{1}{4}}=1\)

\(\frac{1}{z}+\frac{z}{4}\geq 2\sqrt{\frac{1}{4}}=1\)

Cộng theo vế các BĐT vừa thu được ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{4}\geq 3\)

\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 3-\frac{x+y+z}{4}\geq 3-\frac{6}{4}\) (do \(x+y+z\leq 6\) )

\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=2\)

Bài 4:

Áp dụng BĐT Cauchy cho 3 số dương:

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq 3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\sqrt[3]{1}=3\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z\)

a: =>x-3>0

=>x>3

b: \(x^2-x+5=x^2-x+\dfrac{1}{4}+\dfrac{19}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}>0\forall x\)

c: \(\Leftrightarrow x^2+4x-3< =0\)

\(\Leftrightarrow\left(x+2\right)^2< =7\)

\(\Leftrightarrow-\sqrt{7}< =x+2< =\sqrt{7}\)

hay \(-\sqrt{7}-2< =x< =\sqrt{7}-2\)

15 tháng 7 2019

1) Đề sai, thử với x = -2 là thấy không thỏa mãn.

Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:

\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)

\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)

Không thể xảy ra dấu đẳng thức.

9 tháng 4 2017

a)\(\left|x-2\right|\ge1\)

* x-2 \(\ge\)0 \(\Rightarrow\)x\(\ge\)2

x-2\(\ge\)1 \(\Leftrightarrow\)x\(\ge\)3 ( t/m )

*x-2<0\(\Rightarrow x< 2\)

-x+2 \(\ge1\)\(\Leftrightarrow\) -x\(\ge\)-1 \(\Leftrightarrow x\le1\)(t/m)

Vây bpt co nghiem la x\(\ge\)3;x\(\le1\)

b)\(\left|2-x\right|< 3\)

* \(2-x\ge0\Rightarrow x\le2\)

\(2-x< 3\Leftrightarrow-x< 1\Leftrightarrow x>-1\)(t/m)

*\(2-x< 0\Leftrightarrow-x< -2\Rightarrow x>2\)

\(-2+x< 3\Leftrightarrow x< 5\)(t/m)

Các ý còn lại tương tự nhé ok