Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại đề: \(M=\frac{1}{\left(x-1\right)\left(2-x\right)}+\frac{1}{\left(x-1\right)^2}+\frac{1}{\left(2-x\right)^2}\)
\(M=\frac{1}{\left(x-1\right)\left(2-x\right)}+\frac{1}{\left(x-1\right)^2}+\frac{1}{\left(2-x\right)^2}\ge3\sqrt[3]{\frac{1}{\left(x-1\right)^3\left(2-x\right)^3}}=\frac{3}{\left(x-1\right)\left(2-x\right)}\)
\(=\frac{-3}{x^2-3x+2}=\frac{-3}{\left(x^2-3x+\frac{9}{4}\right)-\frac{1}{4}}=\frac{-3}{\left(x-\frac{3}{2}\right)^2-\frac{1}{4}}\ge\frac{-3}{-\frac{1}{4}}=12\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{1}{\left(x-1\right)^2}=\frac{1}{\left(x-1\right)\left(2-x\right)}=\frac{1}{\left(2-x\right)^2}\\\left(x-\frac{3}{2}\right)^2=0\end{cases}\Leftrightarrow x=\frac{3}{2}}\)
...
ĐKXĐ : \(0\le x\ne1\)
a) \(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{\left(1-x\right)^2}{2}\)
\(=\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(1-x\right)^2}{2}\)
\(=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)
\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)
b) \(P=\sqrt{x}\left(1-\sqrt{x}\right)\)
Để P > 0 thì \(\hept{\begin{cases}\sqrt{x}>0\\1-\sqrt{x}>0\end{cases}\Rightarrow}0< x< 1\)
c) \(P=-x+\sqrt{x}=-\left(x-2\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Vậy max P = 1/4 khi x = 1/4
\(2\sqrt{ab}\le a+b\le c\Rightarrow c^2\ge4ab\Rightarrow\frac{c^2}{ab}\ge4\)
\(P=1+\left(\frac{a}{b}\right)^2+\left(\frac{a}{c}\right)^2+\left(\frac{b}{a}\right)^2+1+\left(\frac{b}{c}\right)^2+\left(\frac{c}{a}\right)^2+\left(\frac{c}{b}\right)^2+1\)
\(P=3+\left(\frac{a}{b}\right)^2+\left(\frac{b}{a}\right)^2+\left(\frac{a}{c}\right)^2+\left(\frac{b}{c}\right)^2+\left(\frac{c}{a}\right)^2+\left(\frac{c}{b}\right)^2\)
\(P\ge3+2\sqrt{\frac{\left(ab\right)^2}{\left(ab\right)^2}}+2\sqrt{\frac{\left(ab\right)^2}{c^4}}+2\sqrt{\frac{c^4}{\left(ab\right)^2}}\)
\(P\ge5+2\left(\frac{ab}{c^2}+\frac{c^2}{ab}\right)=5+2\left(\frac{ab}{c^2}+\frac{c^2}{16ab}+\frac{15c^2}{ab}\right)\)
\(P\ge5+2\left(2\sqrt{\frac{abc^2}{16abc^2}}+\frac{15}{16}.4\right)=\frac{27}{2}\)
\(\Rightarrow P_{min}=\frac{27}{2}\) khi \(2a=2b=c\)
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(P\geq \frac{1}{2}\left(\frac{1}{a-b}+\frac{1}{b-c}\right)^2+\frac{1}{(a-c)^2}=\frac{(c-a)^2}{2(b-a)^2(c-b)^2}+\frac{1}{(c-a)^2}\)
Đặt $b-a=x; c-b=y(x,y>0)$ thì $c-a=x+y$. Khi đó: $P\geq \frac{(x+y)^2}{2x^2y^2}+\frac{1}{(x+y)^2}$
Vì $0\leq a< c\leq 2\Rightarrow x+y=c-a\in (0;2]$
$\Rightarrow (x+y)^2\leq 4$
$\Rightarrow 4xy\leq (x+y)^2\leq 4\Rightarrow xy\leq 1$
Do đó:
$P=\frac{7(x+y)^2}{16x^2y^2}+\frac{(x+y)^2}{16x^2y^2}+\frac{1}{(x+y)^2}\geq \frac{7.4xy}{16x^2y^2}+2\sqrt{\frac{1}{16x^2y^2}}$
$=\frac{7}{4xy}+\frac{1}{2xy}=\frac{9}{4xy}\geq \frac{9}{4}$ do $xy\leq 1$
Vậy $P_{\min}=\frac{9}{4}$
Cái này có vẻ không liên quan đến bài toán đang đề cập // Bạn tránh spam những thứ không liên quan. Mình sẽ xóa bài spam sau khi bạn đọc được những dòng này.