Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: ...
\(VT=\left[\frac{\left(1+sinx\right)-\left(1-sinx\right)}{\sqrt{1-sin^2x}}\right]^2=\left(\frac{2sinx}{cosx}\right)^2=4tan^2x=VP\left(đpcm\right)\)
1: \(sin^6x+cos^6x+3sin^2x\cdot cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2-3\cdot sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)
=1
2: \(sin^4x-cos^4x\)
\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)
\(=1-2\cdot cos^2x\)
\(\sqrt{4x^2-4x+1}=\sqrt{x^2+10x+25}\left(x\ge\frac{1}{2}\right)\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x+5\right)^2}\)
\(\Leftrightarrow2x-1=x+5\)
\(\Leftrightarrow2x-1-x-5=0\)
\(\Leftrightarrow x-6=0\Leftrightarrow x=6\left(tm\right)\)
vậy x=6 là nghiệm của phương trình
b) \(\sqrt{x+3}+2\sqrt{4x+12}-\frac{1}{3}\sqrt{9x+27}=8\left(x\ge-3\right)\)
\(\Leftrightarrow\sqrt{x+3}+2\sqrt{4\left(x+3\right)}-\frac{1}{3}\sqrt{9\left(x+3\right)}=8\)
\(\Leftrightarrow\sqrt{x+3}+4\sqrt{x+3}-\sqrt{x+3}=8\)
\(\Leftrightarrow4\sqrt{x+3}=8\)
\(\Leftrightarrow x+3=4\)
<=> x=-1 (tmđk)
vậy x=-1 là nghiệm của phương trình
Để là phân tích thành nhân tử chứ nhỉ?? Chẳng lẽ là "Phân tích ra thừa số nguyên tố"
ĐK: \(x\ge0\)
Đặt \(\sqrt{x}=t\) cho dễ nhìn
a) \(t^2-5t+6=t^2-3t-2t+6\)
\(=t\left(t-3\right)-2\left(t-3\right)=\left(t-3\right)\left(t-2\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)\)
b) \(t^2-t-2=t^2+t-2t-2=t\left(t+1\right)-2\left(t+1\right)\)
\(=\left(t+1\right)\left(t-2\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)
Cảm ơn bạn nhiều nhaaaaa <3 mình xem mấy cái đáp án khác làm tắt không hiểu j ^^ cảm ơn bạn đã làm từng bước để mình hiểu <3 cảm ơn bạn nhiều nhaaaa
xem câu đầu ở đây nè https://olm.vn/hoi-dap/question/1248282.html