Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
THỬ XEM NÂNG CAO CHUYÊN ĐỀ VÀ NÂNG CAO PHÁT TRIỂN XEM CÓ KHÔNG
Bài 1:
Chiều thuận:\(x^2+y^2\vdots 3\Rightarrow x\vdots 3; y\vdots 3\)
Giả sử cả \(x\not\vdots 3, y\not\vdots 3\). Ta biết rằng một số chính phương khi chia 3 thì dư $0$ hoặc $1$.
Do đó nếu \(x\not\vdots 3, y\not\vdots 3\Rightarrow x^2\equiv 1\pmod 3; y^2\equiv 1\pmod 3\)
\(\Rightarrow x^2+y^2\equiv 2\pmod 3\) (trái với giả thiết )
Suy ra ít nhất một trong 2 số $x,y$ chia hết cho $3$
Giả sử $x\vdots 3$ \(\Rightarrow x^2\vdots 3\). Mà \(x^2+y^2\vdots 3\Rightarrow y^2\vdots 3\Rightarrow y\vdots 3\)
Vậy \(x^2+y^2\vdots 3\Rightarrow x,y\vdots 3\)
Chiều đảo:
Ta thấy với \(x\vdots 3, y\vdots 3\Rightarrow x^2\vdots 3; y^2\vdots 3\Rightarrow x^2+y^2\vdots 3\) (đpcm)
Vậy ta có đpcm.
Bài 2: > chứ không \(\geq \) nhé, vì khi \(a=b=c=\frac{1}{2}\) thì cả 3 BĐT đều đúng.
Phản chứng, giả sử cả 3 BĐT đều đúng
\(\Rightarrow \left\{\begin{matrix} a(1-b)> \frac{1}{4}\\ b(1-c)> \frac{1}{4}\\ c(1-a)>\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow a(1-a)b(1-b)c(1-c)> \frac{1}{4^3}(*)\)
Theo BĐT AM-GM thì:
\(a(1-a)\leq \left(\frac{a+1-a}{2}\right)^2=\frac{1}{4}\)
\(b(1-b)\leq \left(\frac{b+1-b}{2}\right)^2=\frac{1}{4}\)
\(c(1-c)\leq \left(\frac{c+1-c}{2}\right)^2=\frac{1}{4}\)
\(\Rightarrow abc(1-a)(1-b)(1-c)\leq \frac{1}{4^3}\) (mâu thuẫn với $(*)$)
Do đó điều giả sử là sai, tức là trong 3 BĐT trên có ít nhất một BĐT đúng.
Chứng minh bằng phản chứng.
Giả sử X, Y, Z đồng thời lớn hơn 1
\(a\left(2-b\right)>1\Rightarrow2-b>a\)
\(\Rightarrow\frac{1}{a}+b< 2\)
Tương tự ta có: \(\frac{1}{b}+c< 2;\text{ }\frac{1}{c}+a< 2\)
Cộng ba bất đẳng thức trên lại, ta được \(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}< 6\text{ (1)}\)
Mặt khác, theo bđt Côsi, ta luôn có:
\(a+\frac{1}{a}\ge2;\text{ }b+\frac{1}{b}\ge2;\text{ }c+\frac{1}{c}\ge2\)
\(\Rightarrow a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge6\text{ (2)}\)
(1) và (2) hoàn toàn mâu thuẩn với nhau, nên điều giả sử sai.
Vậy ta có đpcm.