K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

Ta có:

\(\left(1-a^2\right)\left(1-b\right)>0\)

\(\Leftrightarrow1+a^2b>a^2+b>a^3+b^3\left(1\right)\)

(Vì \(0< a,b< 1\))

Tương tự ta có: 

\(\hept{\begin{cases}1+b^2c>b^3+c^3\left(2\right)\\a+c^2a>c^3+a^3\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được

\(2\left(a^3+b^3+c^3\right)< 3+a^2b+b^2c+c^2a\)

21 tháng 7 2015

Đánh càng ít càng tốt. Kết quả cho "a/a^2+2b+3"

https://vn.answers.yahoo.com/question/index?qid=20130108011703AAV4ogs

Cho 3 số dương a,b,c và a^2+b^2+c^2=3. cmr? | Yahoo Hỏi & Đáp

5 tháng 10 2020

Ta có : \(a^2+2b+3=a^2+1+2b+2\ge2a+2b+2=2\left(a+c+1\right)\)

\(b^2+2c+3=b^2+1+2c+2\ge2b+2c+2=2\left(b+c+1\right)\)

\(c^2+2a+3=c^2+1+2a+2\ge2c+2a+2=2\left(c+a+1\right)\)

Suy ra \(\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\le\frac{a}{2\left(a+b+1\right)}+\frac{b}{2\left(b+c+1\right)}+\frac{c}{2\left(c+a+1\right)}\)

\(=\frac{1}{2}\left(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\right)\)

Tương đương \(\frac{3}{2}-\frac{a}{a^2+2b+3}-\frac{b}{b^2+2c+3}-\frac{c}{c^2+2a+3}\ge\frac{1}{2}\left(\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1}\right)\)

Đặt \(M=\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1}\)

Áp dụng bất đẳng thức Cauchy-Schwarz ta được : \(M=\frac{\left(b+1\right)^2}{\left(b+1\right)\left(a+b+1\right)}+\frac{\left(c+1\right)^2}{\left(c+1\right)\left(b+c+1\right)}+\frac{\left(a+1\right)^2}{\left(a+1\right)\left(c+a+1\right)}\)

\(\ge\frac{\left(a+b+c+3\right)^2}{\left(a+1\right)\left(a+b+1\right)+\left(c+1\right)\left(b+c+1\right)+\left(a+1\right)\left(c+a+1\right)}\)

Do \(\left(a+1\right)\left(a+b+1\right)+\left(c+1\right)\left(b+c+1\right)+\left(a+1\right)\left(c+a+1\right)=a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3\)\(=\frac{1}{2}\left(a^2+b^2+c^2\right)+ab+bc+ca+3\left(a+b+c\right)+\frac{9}{2}=\frac{1}{2}\left(a+b+c+3\right)^2\)

Từ đó \(M\ge\frac{\left(a+b+c+3\right)^2}{\frac{1}{2}\left(a+b+c+3\right)^2}=2\Rightarrow\frac{3}{2}-\frac{a}{a^2+2b+3}-\frac{b}{b^2+2c+3}-\frac{c}{c^2+2a+3}\ge\frac{1}{2}.2=1\)

\(< =>\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\le\frac{1}{2}\left(đpcm\right)\)

Bài toán hoàn tất . Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)

18 tháng 11 2020

Theo đánh giá của bđt AM-GM ta có  \(a^2+1\ge2\sqrt{a^2.1}=2a\Rightarrow a^2+2b+3\ge2a+2b+2\)

Suy ra \(\frac{a}{a^2+2b+3}\le\frac{a}{2a+2b+1}=\frac{a}{2\left(a+b+1\right)}=\frac{1}{2}.\frac{a}{a+b+1}\)

Chứng mình tương tự và cộng theo vế ta được \(LHS\le\frac{1}{2}.\frac{a}{a+b+1}+\frac{1}{2}.\frac{b}{b+c+1}+\frac{1}{2}.\frac{c}{c+a+1}\)

\(=\frac{1}{2}\left(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\right)=\frac{1}{2}\left(3-\frac{b+1}{a+b+1}-\frac{c+1}{b+c+1}-\frac{a+1}{c+a+1}\right)\)

\(=\frac{1}{2}\left[3-\frac{\left(b+1\right)^2}{\left(b+1\right)\left(a+b+1\right)}-\frac{\left(c+1\right)^2}{\left(c+1\right)\left(b+c+1\right)}-\frac{\left(a+1\right)^2}{\left(a+1\right)\left(c+a+1\right)}\right]\)

\(\le\frac{1}{2}\left[3-\frac{\left(a+b+c+3\right)^2}{\left(b+1\right)\left(a+b+1\right)+\left(c+1\right)\left(b+c+1\right)+\left(a+1\right)\left(c+a+1\right)}\right]\)

\(=\frac{1}{2}\left[3-\frac{\left(a+b+c+3\right)^2}{ab+b^2+b+a+b+1+cb+c^2+c+b+c+1+ca+a^2+a+c+a+1}\right]\)

\(=\frac{1}{2}\left[3-\frac{\left(a+b+c+3\right)^2}{a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3}\right]\)

\(=\frac{1}{2}\left[3-\frac{2\left(a+b+c+3\right)^2}{\left(a^2+b^2+c^2+2ab+2bc+2ca\right)+6\left(a+b+c\right)+9}\right]\)

\(=\frac{1}{2}\left[3-\frac{2\left(a+b+c+3\right)^2}{\left(a+b+c\right)^2+2.3.\left(a+b+c\right)+3^2}\right]=\frac{1}{2}\left[3-\frac{2\left(a+b+c+3\right)^2}{\left(a+b+c+3\right)^2}\right]\)

\(=\frac{1}{2}\left[3-2\right]=\frac{1}{2}\)

14 tháng 7 2018

ta có : \(a^8+b^8-a^6b^2-a^2b^6\ne\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\)

\(a^2b^2\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\) cũng có thể âm

\(\Rightarrow\) sai

6 tháng 1 2015

Do 1≥ a,b,c≥0 ta co:

         \((1-a^2)(1-b)+(1-b^2)(1-c)+(1-c^2)(1-a) ≥ 0\)

  <=>  \(3+a^2b+b^2c+c^2a ≥ a^2+b^2+c^2+a+b+c\)(1)

  Lai co: \(a^2(1-a)+b^2(1-b)+c^2(1-c)+a(1-a^2)+b(1-b^2)+c(1-c^2) ≥ 0\)

  <=>  \(a^2+b^2+c^2+a+b+c ≥ 2(a^3+b^3+c^3)\)(2)

 Tu (1) va (2) suy ra \(3+a^2b+b^2c+c^2a ≥ 2(a^3+b^3+c^3)\)

15 tháng 9 2016

\(Bdt\Leftrightarrow\left(a^2+b^2+c^2\right)\left(\text{∑}\frac{a}{a^2+2b^2+c^2}\right)\ge\frac{3\left(a+b+c\right)}{4}\left(1\right)\)

Ta dùng Bđt Bunhiacopski

\(VT\left(1\right)\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{\text{∑}a^3+2\left(ab^2+bc^2+ca^2\right)+\left(a^2b+b^2c+c^2a\right)}\)

Vậy ta cần chứng minh \(\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{\text{∑}a^3+2\left(ab^2+bc^2+ca^2\right)+\left(a^2b+b^2c+c^2a\right)}\ge\frac{3}{4}\left(2\right)\)

Thật vậy \(\left(2\right)\Leftrightarrow\text{∑}a^3+\left(a^2b+b^2c+c^2a\right)\ge2\left(ab^2+bc^2+ca^2\right)\)

Bđt này luôn đúng theo Cauchy vì \(a^3+c^2a\ge2a^2c\)

-->Đpcm

 

 

15 tháng 9 2016

đề thế này \(\frac{ab^2}{a^2+2b^2+c^2}+\frac{bc^2}{b^2+2c^2+a^2}+\frac{ca^2}{c^2+2a^2+b^2}\le\frac{a+b+c}{4}\) ak