Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT quen thuộc sau:\(\frac{4}{a+b}\le\frac{1}{a}+\frac{1}{b}\)
\(\frac{16}{2x+y+z}\le\frac{4}{x+y}+\frac{4}{x+z}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}=\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\)
Tương tự:
\(\frac{16}{x+2y+z}\le\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\)
\(\frac{16}{x+y+2z}\le\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\)
Khi đó:\(16VT\le4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=16\)
\(\Rightarrow VT\le1\)
\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
vì \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}>=\frac{9}{x+1+y+1+z+1}=\frac{9}{1+3}=\frac{9}{4}\)(bđt svacxo)
\(\Rightarrow3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)< =3-\frac{9}{4}=\frac{3}{4}\)
dấu = xảy ra khi x=y=z=\(\frac{1}{3}\)
Câu a.
Ta luôn có
\(\frac{a}{a+b}>\frac{a}{a+b+c}\) (do a+b < a+b+c)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
Cộng theo từng vế rồi rút gọn ta đươc đpcm
Cảm ơn b nhé. B biết làm.câu b c d không giúp m với
1) \(VT=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{x}{x}+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{y}+\frac{y}{z}+\frac{x}{z}+\frac{y}{z}+\frac{z}{z}\)
\(=3+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{y}{z}+\frac{z}{x}\right)\)
Với 2 số a; b dương dễ dàng chứng minh đc: \(\frac{a}{b}+\frac{b}{a}\ge2\) (có thể chứng minh tương đương)
=> VT \(\ge3+2+2+2=9=VP\)=> ĐPCM
dâu = xảy ra khi x = y = z
2) Xét \(M+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(M+3=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(M+3=\frac{1}{2}.\left(2a+2b+2c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(M+3=\frac{1}{2}.\left(\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge\frac{1}{2}.9=\frac{9}{2}\)(Áp dụng câu 1)
=> M \(\ge\frac{9}{2}-3=\frac{3}{2}\)
min M = 3/2 khi a= b = c
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)
Áp dụng BĐT Cô - si
\(\Rightarrow\left\{\begin{matrix}x+y\ge2\sqrt{xy}\\\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\end{matrix}\right.\)
\(\Rightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\sqrt{xy.\frac{1}{xy}}\)
\(\Rightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\) ( đpcm )
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
Áp dụng BĐT Cô - si
\(\Rightarrow\left\{\begin{matrix}x+y+z\ge3\sqrt{xyz}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt{\frac{1}{xyz}}\end{matrix}\right.\)
\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\sqrt{xyz.\frac{1}{xyz}}\)
\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) ( đpcm )
cũng đúng nhưng mình chưa hoc BĐT Cô-si