Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira,
Nguyễn Lê Phước Thịnh, Nguyễn Thị Ngọc Thơ, Nguyễn Thanh Hiền, Quân Tạ Minh, @tth_new
Help meeee! thanks nhiều ạ
Trong de thi hsg cap Thanh pho Ha Noi 2016-2017 co dap an do ban
ĐKXĐ: \(x\ge1;y\ge25\)
\(D=\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}+\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\)
Vì x>=1,y>=25 => x-1>=0,y-25>=0
=> D >= 0
Dấu "=" xảy ra <=> x=1,y=25
Vậy MinD=0 khi x=1,y=25
Ta có: \(\left(x-2\right)^2+25\ge25;\left(y-50\right)^2+1\ge1\)
=>\(\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}\le\frac{1}{x}\sqrt{\frac{x-1}{25}};\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\le\frac{1}{y}\sqrt{y-25}\)
=>\(D\le\frac{1}{x}\sqrt{\frac{x-1}{25}}+\frac{1}{y}\sqrt{y-25}\)
Vì x>=1 => x-1>=0. Áp dụng bđt cosi với 2 số dương x-1 và 1 ta có:
\(\sqrt{x-1}=\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)
=>\(\frac{1}{x}\sqrt{\frac{x-1}{25}}\le\frac{1}{x}\cdot\frac{x}{2}\cdot\frac{1}{\sqrt{25}}=\frac{1}{10}\)
Vì y>=25 => y-25>=0. ÁP dụng bđt cô si cho 2 số dương 25 và y-25 ta có:
\(\sqrt{y-25}=\frac{\sqrt{25\left(y-25\right)}}{5}\le\frac{25+y-25}{2.5}=\frac{y}{10}\)
=>\(\frac{1}{y}\sqrt{y-25}=\frac{1}{y}\cdot\frac{y}{10}=\frac{1}{10}\)
Suy ra \(D\le\frac{1}{10}+\frac{1}{10}=\frac{1}{5}\)
Dấu "=" xảy ra <=> x=2,y=50
Vậy MaxD = 1/5 khi x=2,y=50
\(A=\frac{4}{4x^2+9y^2}+\frac{4}{12xy}+\frac{52}{2x.3y}\)
\(A\ge\frac{16}{4x^2+9y^2+12xy}+\frac{52.4}{\left(2x+3y\right)^2}=\frac{224}{\left(2x+3y\right)^2}\ge\frac{224}{4}=56\)
\(A_{min}=56\) khi \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)
\(A=\frac{2x+3y}{2x+y+2}\)
\(\Leftrightarrow A\left(2x+y+2\right)=2x+3y\)
\(\Leftrightarrow2A=2x\left(1-A\right)+y\left(3-A\right)\)
\(\Leftrightarrow\left(2A\right)^2=\left(2x\left(1-A\right)+y\left(3-A\right)\right)^2\le\left(4x^2+y^2\right)\left(\left(1-A\right)^2+\left(3-A\right)^2\right)\)
\(\Leftrightarrow\left(2A\right)^2\le\left(\left(1-A\right)^2+\left(3-A\right)^2\right)\)
\(\Leftrightarrow-5\le A\le1\)
Chết em ấn nhầm nút rồi