Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện vân trùng: \(k_1.\lambda_1=k_2.\lambda_2\)
\(\Rightarrow \lambda_2=\dfrac{k_1\lambda_1}{k_2}\)
Mặt khác \(k_1-1+k_2-1=9 ==> k_1+k_2=11 ==> k_1=11-k_2
\)
Ta có: \(0,38 \le \lambda_2 \le 0,76\)
==> \(0,38 \le \frac{11.\lambda_1}{k_2} - \lambda_1 \le 0,76\)
==> \(0,38 \le \frac{4,851}{k_2}-0,4410 \le 0,76\)
==> \(k_2<5,9 ; k_2>4,03 ==> k=5 ==> \lambda_2=6.\lambda_1/5=5292A^o\)
x x s s 2 2 16 20 vân trung tâm x
\(N = N_1+N_2+N_2-(N_{12}+N_{13}+N_{23}) -N_{123}\)
Tìm \(N_1,N_2,N_3\)lần lượt là số vân sáng của các bức xạ 1,2,3 trong đoạn x
Số vân sáng của bức xạ 1 trong đoạn x thỏa mãn: \(x_{s2}^{16} \leq x_{1} \leq x_{s2}^{20}\)
=> \(16i_2 \leq k_1i_1 \leq 20i_2\)
=> \(16\frac{\lambda_2}{\lambda_1} \leq k_1 \leq 20\frac{\lambda_2}{\lambda_1}\) (do \(16\lambda_1 = 20\lambda_2 => \frac{\lambda_2}{\lambda_1} = \frac{4}{5}\))
=> \(12,8 \leq k_1 \leq 16 => k_1 = 13,..16.\). Có 4 vân sáng của bức xạ 1.
Làm tương tự: \(16i_2 \leq k_3i_3 \leq 20i_2\) => \(20 \leq k_1 \leq 25 => k_1 = 20,..25.\) Có 6 vân sáng của bức xạ 3.
Trong đoạn x có chứa 5 vân sáng bức xạ 2 vì ((\(k_2 = 16,..20\))
Tìm số vân sáng trùng nhau của bức xạ 1 và bức xạ 2.
\(x_{s2} = x_{s1} => \frac{\lambda_2}{\lambda_1} = \frac{k_1}{k_2} = \frac{4}{5}.\)
Ta có bảng sau:
k2 | 16 | 17 | 18 | 19 | 20 |
k1 | loại (\(\notin Z\)) | loại (\(\notin Z\)) | loại (\(\notin Z\)) | loại (\(\notin Z\)) | 16 |
Như vậy có 1 vân sáng trùng nhau của bức xạ 1 và 2. (\((k_1 ,k_2) = (16,20) \)
Làm tương tự có 1 vân sáng trùng nhau của bức xạ 2 và 3 là \((k_2 ,k_3) = (20,25) \)
1 vân sáng trùng nhau của bức xạ 1 và 3 là \((k_1 ,k_3) = (16,25) \)
Dựa vào các cặp trùng nhau thấy có 1 vị trí trùng nhau của cả 3 bức xạ là \((k_1,k_2 ,k_3) = (16,20,25) \)
Tóm lại, số vân sáng quan sát được trong đoạn x là
\(N = 4+5+6 -(1+1+1)-1 = 11.\)
Chọn đáp án C.11
Vị trí vân trùng nhau:
\(x_T=k_1i_1=k_2i_2\Rightarrow k_1.\lambda_1=k_2.\lambda_2\)
\(\Rightarrow \dfrac{k_1}{k_2}=\dfrac{\lambda_2}{\lambda_1}=\dfrac{3}{2}\)
Lấy \(k_1=3\)
Do đó tại vị trí trùng nhau là vân sáng bậc 3 của bức xạ \(\lambda_1\)
o 1,2 1,2,3 x T
Khoảng cách giữa 2 vân gần nhất có màu giống vân trung tâm là \(x_{\equiv}\)
\(\Rightarrow x_{\equiv}=k_1i_1=k_2i_2=k_3i_3\)\(\Rightarrow k_1\lambda_1=k_2\lambda_2=k_3\lambda_3\)(1)
Ta có: \(\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{5}{4}\)
Vì trong khoảng giữa hai vân sáng gần nhau nhất cùng màu với vân trung tâm chỉ có một vị trí trùng nhau của các vân sáng ứng với hai bức xạ λ1, λ2 nên: \(\begin{cases}k_1=5.2=10\\k_2=4.2=8\end{cases}\)
Thay vào (1) ta có: \(10\lambda_1=8\lambda_2=k_3\lambda_3\)
λ3 có màu đỏ nên λ1 > λ2
\(\Rightarrow k_3<8\)
\(\Rightarrow k_3=7;5;3\)
+ \(k_3=7\Rightarrow\lambda_3=\frac{8}{7}\lambda_2=\frac{8}{7}.0,5=0,57\)
+ \(k_3=5\Rightarrow\lambda_3=\frac{8}{5}\lambda_2=\frac{8}{5}.0,5=0,8\)loại, vì ngoài bức xạ màu đỏ.
Vậy \(\lambda_3=0,57\mu m\), không có đáp án nào thỏa mãn :))
Ý này của bạn bị nhầm λ3 có màu đỏ nên λ1 > λ2
Sửa lại là: Vì \(\lambda_3\) có màu đỏ nên \(\lambda_3>\lambda_2\)
Khoảng cách giữa hai vân sáng cùng màu gần nhất với vân chính giữa là : x = k1 i1 = k2 i2 => k1λ1 = k2λ2
Nhận xét: k2 = 9 => k1.720 = 9 λ2 => λ2 = 80 k1.
Do λ2 có giá trị trong khoảng từ 500nm đến 575nm nên dễ thấy k1 = 7
=> λ2 = 560 nm.
Đáp án D
Khoảng cách giữa 2 vân sáng liên tiếp có màu giống màu vân chính giữa là: \(x_T\)
\(\Rightarrow x_T=k_1.i_1=k_2.i_2\)
\(\Rightarrow k_1.\lambda_1=k_2.\lambda_2\)
\(\Rightarrow\dfrac{k_1}{k_2}=\dfrac{\lambda_2}{\lambda_1}=\dfrac{4}{3}\)
\(\Rightarrow k_1=4;k_2=3\)
\(\Rightarrow 2,56=4.i_1=3.i_2\)
\(\Rightarrow i_1=0,64mm\); \(i_2=0,85mm\)
\(\Rightarrow \lambda_2=\dfrac{1,5.0,85}{2}=0,64\mu m\)
Bạn tham khảo một bài hoàn toàn tương tự như vậy nhé
Câu hỏi của trần thị phương thảo - Học và thi online với HOC24
λ2 là bước sóng ánh sáng lam nên λ2 < λ1
Khoảng cách giữa hai vân sáng cùng màu gần nhất với vân chính giữa là : x = k1 i1 = k2 i2 => k1λ1 = k2λ2
Giữa hai vân sáng gần nhất có 7 vân màu lam nên k2 = 8.
=> k1640 = 8 λ2 => λ2 = 80 k1
Do λ2 là bước sóng ánh sáng lam nên k1 = 7
=> Số vân sáng màu đỏ ở giữa 2 vân cùng màu là: 6
Đáp án B
Khoảng cách giữa 2 vân sáng gần nhau nhất cùng màu với vân trung tâm: \(x_T=k_1i_1=k_2i_2\)(1)
\(\Rightarrow k_1\lambda_1=k_2\lambda_2\Rightarrow\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{0,6}{0,48}=\frac{5}{4}\)
\(\Rightarrow\begin{cases}k_1=5\\k_2=4\end{cases}\)
Thay vào (1) \(x_T=5i_1=4i_2\)
Như vậy tại vị trí 2 vân trùng nhau kể từ vân trung tâm có vân bậc 5 của \(\lambda_1\) và bậc 4 của \(\lambda_2\)
Do đó, giữa 2 vân sáng cùng màu vân trung tâm có: 4 vân sáng λ1 và 3 vân sáng λ2.
Đáp án A.