Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ba phần cần tìm lần lượt là a,b,c
Theo đề, ta có: \(\dfrac{1}{5}a=\dfrac{10}{3}b=\dfrac{4}{5}c\)
=>\(\dfrac{a}{5}=\dfrac{b}{\dfrac{5}{4}}=\dfrac{c}{\dfrac{3}{10}}\)
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{a}{5}=\dfrac{b}{\dfrac{5}{4}}=\dfrac{c}{\dfrac{3}{10}}=\dfrac{a+b+c}{5+\dfrac{5}{4}+\dfrac{3}{10}}=\dfrac{786}{\dfrac{131}{20}}=120\)
=>a=600; b=150; c=36
1: Gọi ba phần được chia lần lượt là a,b,c
Theo đề, ta có: 2a=3b=4c
=>2a/12=3b/12=4c/12
=>a/6=b/4=c/3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b+c}{6+4+3}=\dfrac{520}{13}=40\)
Do đó: a=240; b=160; c=120
Gọi 3 số đc chia từ số 900 là a;b;c
Vì chia số 900 thành 3 phần tỉ lệ với \(\dfrac{1}{3};\dfrac{1}{4};\dfrac{1}{6}\)
=>\(3a=4b=6c\)
=>\(\dfrac{a}{8}=\dfrac{b}{6}=\dfrac{c}{4}\)
Áp dụng t/c của dãy tỉ số bằng nhau,ta có:
\(\dfrac{a}{8}=\dfrac{b}{6}=\dfrac{c}{4}=\dfrac{a+b+c}{8+6+4}=\dfrac{900}{18}=50\)
=>a=400;b=300;c=200
Gọi 3 phần đó lần lượt là :a,b,c.
Ta có: a/1/2=b/2/3=c/3/4 và a+b+c=552
Áp dụng t/c của dãy tỉ số bằng nhau,ta có:
a/1/2=b/2/3=c/3/4=a+b+c=1/2+2/3+3/4=552/23/12=2
⇒a=2.1/2=1
b=2.2/3=4/3
c=2.3/4=3/2
Vậy 3 phần đó là : 1 ; 4/3 ; 3/2.
Gọi 3 phần được chia là \(x;y;z\)
Theo đề bài ta có:
\(\dfrac{1}{5}x=1\dfrac{1}{4}y=0,03z\)
\(\Rightarrow\dfrac{1}{5}x=\dfrac{5}{4}y=\dfrac{3}{100}z\)
\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{\dfrac{4}{5}}=\dfrac{z}{\dfrac{100}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{\dfrac{4}{5}}=\dfrac{z}{\dfrac{100}{3}}\)
\(=\dfrac{x+y+z}{5+\dfrac{4}{5}+\dfrac{100}{3}}\)
\(=\dfrac{980}{\dfrac{587}{15}}=25...\)
....
Gọi 3 phân số cần tìm là \(\frac{a}{b};\frac{c}{d};\frac{e}{f}\)
Theo đề bài ta có:
\(\frac{a}{b}+\frac{c}{d}+\frac{e}{f}=15\frac{83}{120}=\frac{1883}{120}\) (1)
\(a\div c\div e=5\div7\div11\Leftrightarrow\frac{a}{5}=\frac{c}{7}=\frac{e}{11}\)
Đặt các tỉ số trên là \(p\)
\(\Rightarrow\left\{\begin{matrix}a=5p\\b=7p\\c=11p\end{matrix}\right.\) (2)
\(b\div d\div f=\frac{1}{\frac{1}{4}}\div\frac{1}{\frac{1}{5}}\div\frac{1}{\frac{1}{6}}=4\div5\div6\Leftrightarrow\frac{b}{4}=\frac{d}{5}=\frac{f}{6}\)
Đặt các tỉ số trên là \(q\)
\(\Rightarrow\left\{\begin{matrix}b=4q\\d=5q\\f=6q\end{matrix}\right.\) (3)
Từ (1);(2) và (3)
\(\Rightarrow\frac{a}{b}+\frac{c}{d}+\frac{e}{f}=\frac{5p}{4q}+\frac{7p}{5q}+\frac{11p}{6q}=\frac{1883}{120}\)
\(\Rightarrow\frac{5}{4}.\frac{p}{q}+\frac{7}{5}.\frac{p}{q}+\frac{11}{6}.\frac{p}{q}=\frac{p}{q}\left(\frac{5}{4}+\frac{7}{5}+\frac{11}{6}\right)=\frac{1883}{120}\)
\(\Rightarrow\frac{269}{60}.\frac{p}{q}=\frac{1883}{120}\Rightarrow\frac{p}{q}=\frac{7}{2}\)
\(\Rightarrow\left\{\begin{matrix}\frac{a}{b}=\frac{5}{4}.\frac{7}{2}=\frac{35}{8}\\\frac{c}{d}=\frac{7}{5}.\frac{7}{2}=\frac{49}{10}\\\frac{e}{f}=\frac{11}{6}.\frac{7}{2}=\frac{77}{12}\end{matrix}\right.\)
Vậy 3 phân số đó là: \(\left\{\begin{matrix}\frac{35}{8}\\\frac{49}{10}\\\frac{77}{12}\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{2}{3}}=\dfrac{c}{\dfrac{3}{4}}=\dfrac{a+b+c}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}}=\dfrac{69}{\dfrac{23}{12}}=36\)
Do đó: a=18; b=24; c=27
3 phần được chia ra của 2475 là tỉ lệ nghich với \(\dfrac{1}{22};\dfrac{1}{33};\dfrac{1}{44}\) nên 3 phần đó là \(22;33;44\)
Chia 2475 tỉ lệ nghịch với \(\dfrac{1}{22},\dfrac{1}{33}\) và \(\dfrac{1}{44}\) cũng là chia số đó tỉ lệ thuận với 22, 33 và 44. Ta có:
\(\dfrac{x}{22}=\dfrac{y}{33}=\dfrac{z}{44}=\dfrac{x+y+z}{22+33+44}=\dfrac{2475}{99}=25\)
Vậy: \(\Rightarrow\left\{{}\begin{matrix}x=22.25=550\\y=33.25=825\\z=44.25=1100\end{matrix}\right.\)