Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình vẽ đc hình nhưng ko đưa vào đc
Câu 1:a)Vì tam giác ABC cân tại A
=>B=ACD
Mà ACD=ECN(đối đỉnh)
=>B=ECN
Vì AB=AC(tam giác ABC cân tại A)
Mà AC=IC
=>AB=IC
Xét tam giác ABD và tam giác ICE có:
AB=IC(c/m trên)
B=ECN(c/m trên)
BD=CE(gt)
=>tam giác ABD=tam giác ICE(c.g.c)
Câu 2:Xét tam giác BMD và tam giác CEN có:
BDM=CNE(=90 độ)
BD=CE(gt)
B=ECN(c/m trên)
=>tam giác BDM=tam giác CEN(g.c.g)
=>BM=CN(2 cạnh tương ứng)
Có mấy dấu góc chưa viết,thông cảm nha!
A B C E M
a) Xét hai tam giác vuông ABM và ECM có:
MB = MC (gt)
MA = ME (gt)
Vậy: \(\Delta ABM=\Delta ECM\left(ch-cgv\right)\)
b) Vì \(\Delta ABM=\Delta ECM\left(cmt\right)\)
Suy ra: \(\widehat{ABM=\widehat{BCE}}\) ( hai góc tương ứng)
Mà \(\widehat{ABM=90^o}\)
Nên \(\widehat{BCE=90^o}\) hay EC \(\perp\) AB
c) Vì \(\Delta ABC\) vuông tại B
nên \(\widehat{ABC>\widehat{ACB}}\) (vì \(\widehat{ABC=90^o}\))
\(\Rightarrow\) AC > AB (quan hệ giữa góc và cạnh đối diện trong tam giác)
Mà AB = CE (\(\Delta ABM=\Delta ECM\))
Do đó: AC > CE
d) Ta có: \(\widehat{BAE=\widehat{AEC}}\) (\(\Delta ABM=\Delta ECM\))
Mà hai góc này ở vị trí so le trong
Vậy: BE // AC.
A B C E D
a) Vì \(\Delta\)ABC cân tại A
nên \(\widehat{ABC}\) = \(\widehat{ACB}\)
Áp dụng tc tổng 3 góc trong 1 tg ta có:
\(\widehat{ABC}\) + \(\widehat{ACB}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{ABC}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{ABC}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (1)
Do AD = AE nên \(\Delta\)ADE cân tại A
=> \(\widehat{AED}\) = \(\widehat{ADE}\)
\(\widehat{AED}\) + \(\widehat{ADE}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{AED}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{AED}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (2)
Từ (1) và (2) suy ra \(\widehat{ABC}\) = \(\widehat{AED}\)
mà 2 góc này ở vị trí đồng vị nên DE // BC.
b) Ta có: AE + EB = AB
AD + DC = AC
mà AE = AD; AB = AC (\(\Delta\)ABC cân tại A)
=> EB = DC
Lại có: \(\widehat{ABC}\) = \(\widehat{ACB}\)
Hình, tự vẽ:
a/ Xét tam giác ABI và tam giác DBI có:
BA = BD (GT)
góc ABI = góc DBI (GT)
BI: cạnh chung
=> tam giác ABI = tam giác DBI (c.g.c)
b/ Ta có: tam giác ABI = tam giác DBI (câu a)
=> góc BAI = góc BDI = 900 (2 góc tương ứng)
Vậy ID vuông góc BC (đpcm)
c/ Xét tam giác ABC và tam giác DBE có:
BA = BD (GT)
B: góc chung
BC = BE (GT)
=> tam giác ABC = tam giác DBE (c.g.c)
=> góc BAC = góc BDE = 900 (2 góc tương ứng)
Vậy ED vuông góc BC
Ta có: ID vuông góc BC
ED vuông góc BC
=> ID trùng ED
hay E;I;D thẳng hàng với nhau
a: Xét ΔABC và ΔDEC có
CA=CD
\(\widehat{ACB}=\widehat{DCE}\)
CB=CE
Do đó: ΔABC=ΔDEC
b: Ta có: ΔABC=ΔDEC
nên \(\widehat{BAC}=\widehat{EDC}=90^0\)
=>AD\(\perp\)DE
c: Xét tứ giác ABDE có
AB//DE
AB=DE
Do đó: ABDE là hình bình hành
Suy ra: BD//AE