Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em vừa nghĩ ra 2 cách làm bằng kiến thức lớp 7, co check giùm em nhé!
Ta có: \(\widehat{CAD}=90^0-\widehat{DAB}\)
và \(\widehat{CDA}=90^0-\widehat{HAD}\)
Mà \(\widehat{DAB}=\widehat{HAD}\left(gt\right)\Rightarrow AC=DC\)
Tương tự ta có: AB = EB
\(\Rightarrow AB+AC=EB+DC\)
\(=ED+DB+DC=DE+BC\)
\(\Rightarrow DE=AB+AC-BC=3+4-5=2\left(cm\right)\)
Vậy DE = 2 cm
A B C H D E
Ta có: \(\Delta\)ABC vuông tại A
=> BC\(^2\)=AB\(^2\)+ AC\(^2\)= 3\(^2\)+ 4\(^2\)= 25 => BC = 5 (cm)
Có: \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}=\frac{1}{3^2}+\frac{1}{4^2}=\frac{25}{144}\)
=> AH = 2,4 (cm)
Có: \(CH=\frac{AC^2}{BC}=\frac{4^2}{5}=3,2\)(cm)
=> BH = 5 - 3,2 = 1,8 ( cm )
AE là phân giác ^CAH => \(\frac{EC}{EH}=\frac{AC}{AH}=\frac{4}{2,4}\) mà EC + EH = CH = 3,2
=> EC = 2 ( cm ) ; EH = 1,2 ( cm )
AD là phân giác ^BAH => \(\frac{DH}{DB}=\frac{AH}{AB}=\frac{2,4}{3}\); mà DH + DB = HB = 1,8
=> DH = 0,8 ( cm ) ; BD = 1( cm )
Vậy DE = DH + HE = 0,8 + 1,2 = 2 ( cm )
a: Xét ΔAHE có
AB vừa là đường cao, vừa là trung tuyến
nên ΔAHE cân tại A
=>AB là phân giác của góc HAE và AE=AH
Xét ΔAHF có
AC vừa là đường cao, vừa là trung tuyến
nên ΔAHF cân tại A
=>AC là phân giác của góc HAF và AH=AF
=>AE=AF
Xét ΔAHM và ΔAEM có
AH=AE
góc HAM=góc EAM
AM chung
=>ΔAHM=ΔAEM
=>góc AHM=góc AEM
Xét ΔAHN và ΔAFN có
AH=AF
góc HAN=góc FAN
AN chung
=>ΔAHN=ΔAFN
=>góc AHN=góc AFN
=>góc AHN=góc AHM
=>HA là phân giác của góc MHN
b: Xét ΔHEF có HI/HE=HK/HF
nên IK//EF
=>IK//MN
a: XétΔAIB vuông tại I và ΔAIC vuông tại I có
AB=AC
AI chung
=>ΔAIB=ΔAIC
b: Xét ΔCIE có
CH vừa là đường cao, vừa là trung tuyến
=>ΔCIE cân tại C
https://hoidap247.com/cau-hoi/111101 bạn có thể tham khảo ở đây nha. Chúc bạn học tốt !!!!!!!