\(⋮\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

giả sử x và y đều không chia hết cho 3 

\(\hept{\begin{cases}x^4\equiv1\left(mod3\right)\\y^4\equiv1\left(mod3\right)\end{cases}\Rightarrow x^4+y^4\equiv2\left(mod3\right)\Rightarrow\frac{x^4+y^4}{15}\notin N}\)

=> x và y đều phải chi hết cho 3 

tương tự sử dụng với mod 5, ( lũy thừa bậc 4 của 1 số luôn đồng dư với 0 hoạc 1 theo mod5 )

=> x và y đề phải chia hết cho 5 

=> x,y đều chia hết cho 15

mà số nguyên dương nhỏ nhất chia hết cho 15 là 15 => x=y=15

thay vào và tìm min nhé

2 tháng 1 2018

bài 1 a, hình như có thêm đk là a+b+c=3

2 tháng 1 2018

Bài 4 nha

Áp dụng BĐT cô si ta có

\(\frac{1}{x^2}+x+x\ge3\sqrt[3]{\frac{1}{x^2}.x.x}=3.\)

Tương tự với y . \(A\ge6\)dấu = xảy ra khi x=y=1

3 tháng 11 2018

Mất gốc rồi :V
Phép chia hết là phép chia có số bị chia ,số chia và thương đều là số nguyên ; số dư =0

K/n chia hết dùng trong tập số nguyên ( Z )

2 phép chia đó ko phải là phép chia hết vì thương ko phải số nguyên

27 tháng 1 2020

\(P=4a+3b+\frac{c^3}{\left(a-b\right)b}\)

\(=\left[\left(a-b\right)+b+\frac{c^3}{\left(a-b\right)b}\right]+3b+3a\)

\(\ge3c+3b+3a=3\left(a+b+c\right)=12\)

Dấu "=" xảy ra tại \(a=2;b=1;c=1\)

chi ơi đề đây nhé , các bạn giải được thì giải không được thì thôi, mình chỉ viết đề cho bạn mình thôi mong các bạn thông cảm nhébài 1)cho \(x,y\in Q\) thỏa mãn \(\left(x+y\right)^3=xy\left(3x+3y+2xy\right)\) chứng minh rằng \(\sqrt{1-\frac{1}{xy}}\) là số hữ tỉbài 2 )cho a,b,c là các số hữu tỉ thỏa mãn ab+bc+ca=1. chứng minh rằng \(B=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\in Q\)chú ý...
Đọc tiếp

chi ơi đề đây nhé , các bạn giải được thì giải không được thì thôi, mình chỉ viết đề cho bạn mình thôi mong các bạn thông cảm nhé

bài 1)

cho \(x,y\in Q\) thỏa mãn \(\left(x+y\right)^3=xy\left(3x+3y+2xy\right)\) chứng minh rằng \(\sqrt{1-\frac{1}{xy}}\) là số hữ tỉ

bài 2 )

cho a,b,c là các số hữu tỉ thỏa mãn ab+bc+ca=1. chứng minh rằng \(B=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\in Q\)

chú ý chị chi em viết cho chị mà chị phải trả công em chứ còn thùy linh là khác 

bài 3) 

cho a,b,c là các số hữ tỉ thỏa mãn ab+bc+ca=1. tính \(C=a.\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+...\) (n0s theo quy luật chi nhé tớ biết đầu cậu thông minh nên tớ viết thế thôi)

bài 4) 

cho a,b,c >0 thỏa mãn abc=1. tính \(A=\frac{\sqrt{a}}{1+\sqrt{a}+\sqrt{ab}}+...\) (cái này cũng theo quy luật)

bài 5) 

giải các phương trình vô tỉ sau 

1,2 không phải làm nên không chép nữa

3)   \(\sqrt{x^2-10x+25}-3x=1\) 

4)    \(x-\frac{1}{2}\sqrt{x^2-8x+16}=2\)

5)   \(\sqrt{x^2-16}+\sqrt{x^2-5x+4}=0\)

6) chú ý đây viết mỏi tay luôn nhớ mai đãi bánh mì với kem đấy 

8
5 tháng 9 2017

lần sau đăng từng câu hỏi lên thôi còn như thế này ms nhìn đã mỏi mắt ns đến j lm

5 tháng 9 2017

đây mà gọi là toán lớp 1 à

1 tháng 11 2018

Đặt: 

\(P=\frac{a}{a^3+a+1}+\frac{b}{b^3+b+1}+\frac{c}{c^3+c+1}\)

Ta c/m:

\(a^3+1\ge a^2+a\Leftrightarrow a^3-a^2-\left(a-1\right)\Leftrightarrow\left(a-1\right)^2\left(a+1\right)\ge0\Rightarrow DPCM\)

\(\Rightarrow P\le\frac{a}{a^2+2a}+\frac{b}{b^2+2b}+\frac{c}{c^2+2c}=\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)

Áp dụng bđt Sac- xơ ngược ta được:

\(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\le\frac{1}{9}\left(\frac{4}{2}+\frac{1}{a}\right)+\frac{1}{9}\left(\frac{4}{2}+\frac{1}{b}\right)+\frac{1}{9}\left(\frac{1}{c}+\frac{4}{2}\right)\)

\(=\frac{2}{3}+\frac{ab+bc+ca}{9}\)

Ta cần c/m: \(\frac{2}{3}+\frac{ab+bc+ca}{9}\le1\Leftrightarrow\frac{ab+bc+ca}{9}\le\frac{1}{3}\Leftrightarrow ab+bc+ca\ge3\)

1 tháng 11 2018

Tiếp nhé:

Áp dụng bđt AM-GM ta được:

\(ab+bc+ca\ge3\sqrt[3]{ab.bc.ca}=3\)  (do abc=1)

Dấu bằng xảy ra khi a=b=c=1

=>DPCM

Bài này anh nhờ 1 người bạn trên fb giúp

10 tháng 8 2019

tth_new             

\(a^3+b^3+c^3=\left(a+b+c\right)^3\)nha !

Học tốt !