K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2020

BẠN TỰ VẼ HÌNH NHÉ !!!!!!!

a) Tam giác ABD và tam giác BDE có BAD=BED=90 độ; ABD=EBD (Do BD là tia p/g)

=> góc ADB = góc EDB

Xét tam giác ABD và tam giác EBD có: 

\(\hept{\begin{cases}ABD=EBD\\BAD=BED=90\\ADB=BDE\left(cmt\right)\end{cases}}\)

=> Tam giác ABD = tam giác EBD (gcg) => ĐPCM

b) Vì: Tam giác ABD = tam giác EBD (gcg)

=> AD=DE; AB=BE

=> 2 điểm B; D đều cách đều AE

=> BD là trung trực của AE. 

=> ĐPCM

11 tháng 8 2020

c) 

c) Có: AD=DE.

Mà: \(DE^2+BE^2=BD^2\)

=> \(BD^2>DE^2\)

=> \(BD>DE\)

=> \(BD>AD\)    (3) 

Mà: BDC là góc ngoài của tam giác ABD

=>  góc \(BDC=A+ABD=90+ABD\)

=> góc BDC > 90 độ (1)

Mà góc C + góc EDC = 90 độ 

=> góc C < 90 độ (2)

TỪ (1) VÀ (2) => góc BDC > góc C

=>  Theo tính chất giữa góc và cạnh thì: BC > BD      (4)

TỪ (3) VÀ (4) => \(BC>AD\)

VẬY TA CÓ ĐPCM.

d) Xét tam giác ADF và tam giác EDC có: 

\(\hept{\begin{cases}AF=CE\\ADC=EDC\left(dd\right)\\AD=ED\left(cmt\right)\end{cases}}\)

=>Tam giác ADF=Tam giác EDC (cgc)

=> góc DFA = góc DCE 

Mà: BAC=90 độ (gt) 

=> góc ACB + góc ABD= 90 độ

=> góc DFA + ABC =90 đọ

=> FEB=90 độ

=> D,E,F thẳng hàng

* Xét tam giác BFC có: EF vuông góc BC (CMT) ; CA vuông góc BF (gt) ; EF giao CA ={D}

=> Theo định lí đảo của trực tâm thì BD vuông góc CF

VẬY TA CÓ ĐPCM

17 tháng 6 2017

B A 1 2 F E C

a, Xét \(\Delta BAD;\Delta BED\) có:

\(\widehat{BAD}=\widehat{BED}=90^0\)

BD chung

\(\widehat{B_1}=\widehat{B_2}\) (do BD là p/g góc B)

\(\Rightarrow\Delta BAD=\Delta BED\left(CH-GN\right)\)

Vậy \(\Delta BAD=\Delta BED\)

b, Vì \(\Delta BAD=\Delta BED\)

=> AB=EB => B nằm trên trung trực của AE

AD=ED => D nằm trên trung trực của AE

=> BD là trung trực của AE.

Vậy BD là trung trực của AE.

c, Vì \(\Delta DEC\) vuông tại E => DC>DE (1)

Mà AD=ED (2)

Từ (1) và (2) => AD<DC

Vậy AD<DC

d, Ta có: \(A\in BF\) => BF=AB+AF; \(E\in BC\) => BC=EB+EC (3)

Mà AB=EB; AF=EC (4)

Từ (3) và (4) => BF=BC => tam giác BFC cân tại B => \(\widehat{BFC}=\widehat{BCF}\Rightarrow\widehat{AFC}=\widehat{ECF}\)

Xét \(\Delta AFC;\Delta ECF\) có:

AF=EC

\(\widehat{AFC}=\widehat{ECF}\)

FC chung

\(\Rightarrow\Delta AFC=\Delta ECF\left(c-g-c\right)\Rightarrow\widehat{FAC}=\widehat{CEF}\Rightarrow\widehat{CEF}=90^0\)

\(\Rightarrow FE\perp EC\). Mà \(DE\perp EC\) => FE và DE trùng nhau => E,D,F thẳng hàng

Vậy E,D,F thẳng hàng

17 tháng 6 2017

B A C D E F

a)

Xét \(\Delta BAD\)\(\Delta BED\), có:

\(\widehat{BAD}=\widehat{BED}=90^0\)

BD là cạnh chung

\(\widehat{ABD}=\widehat{EBD}\) (BD là tia phân giác của \(\widehat{ABC}\))

\(\Rightarrow\Delta BAD=\Delta BED\) (cạnh huyền_góc nhọn)

\(\Rightarrowđpcm\)

b)

Có: \(BA=BE\) (\(\Delta BAD=\Delta BED\))

\(\Rightarrow\) Điểm B cách đều hai điểm A và E.

\(\Rightarrow\) Điểm B thuộc đường trung trực của AE. (1)

Lại có: \(DA=DE\) (\(\Delta BAD=\Delta BED\))

\(\Rightarrow\) Điểm D cách đều hai điểm A và E.

\(\Rightarrow\) Điểm D thuộc đường trung trực của AE. (2)

Từ (1) và (2) \(\Rightarrow\) BD là đường trung trực của AE.

\(\Rightarrowđpcm\)

c)

Có: \(\widehat{DEC}=90^0\) (\(DE\perp BC\))

\(\Rightarrow DC>DE\) (Quan hệ giữa cạnh và góc đối diện trong tam giác)

\(DE=DA\) (\(\Delta BAD=\Delta BED\))

\(\Leftrightarrow DC>DA\)

Hay \(AD< DC\) (đpcm)

d)

Xét \(\Delta ADF\)\(\Delta EDC\), có:

\(\widehat{FAD}=\widehat{CED}=90^0\)

\(AF=CE\) (gt)

\(AD=DE\) (\(\Delta BAD=\Delta BED\))

\(\Rightarrow\Delta ADF=\Delta EDC\) (Hai cạnh góc vuông)

\(\Rightarrow\widehat{ADF}=\widehat{EDC}\)

Lại có:

\(\widehat{ADE}+\widehat{EDC}=180^0\) (Hai góc kề bù)

Mà: \(\Rightarrow\widehat{ADF}=\widehat{EDC}\) (chứng minh trên)

\(\Leftrightarrow\widehat{ADE}+\widehat{ADF}=180^0\)

\(\Leftrightarrow\) Ba điểm E, D, F thẳng hàng (Vì cùng nằm trên góc bẹt)

\(\Rightarrowđpcm\)

Chúc bạn học tốt!ok

20 tháng 1 2019

A M B C H K

a) Chứng minh MH=MK

Xét tam giác AMH và tam giac AMK có

AM cạnh chung

\(\widehat{MAH}=\widehat{MAK}\)(AM là tia phân giác của \(\widehat{BAC}\))

=> Tam giác AMH = tam giác AMK

=> MH=MK (đpcm)

b) Chứng minh tam giác ABC cân

Ta có M là trung điểm của BC (gt)

Nên AM là đường trung tuyến ứng cạnh BC

Mà AM cũng là đưởng phân giác ứng cạnh BC (gt)

Do đó tam giác ABC cân tại A (đpcm)

Kết bạn với mình nha :)

12 tháng 10 2019

Bài 3:

Xét 2 \(\Delta\) \(AMO\)\(BNO\) có:

\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)

\(OA=OB\) (vì O là trung điểm của \(AB\))

\(AM=BN\left(gt\right)\)

=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)

=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)

\(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)

=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)

=> \(M,O,N\) thẳng hàng. (1)

Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)

=> \(OM=ON\) (2 cạnh tương ứng) (2)

Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)

Bài 4:

Chúc bạn học tốt!