K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2023

a: 

loading...

b: Phương trình hoành độ giao điểm là:

4-2x=3x+1

=>-2x-3x=1-4

=>-5x=-3

=>\(x=\dfrac{3}{5}\)

Thay x=3/5 vào y=3x+1, ta được:

\(y=3\cdot\dfrac{3}{5}+1=\dfrac{9}{5}+1=\dfrac{14}{5}\)

Vậy: \(N\left(\dfrac{3}{5};\dfrac{14}{5}\right)\)

c: (d'): y=3x+1

=>a=3

\(tan\alpha=a=3\)

=>\(\alpha\simeq71^034'\)

20 tháng 12 2021

jdhjdhshfsjsxhxhxx                  udjdghxhjxhg

20 tháng 12 2021

sao dạo này toàn người cho toán lớp 9 nhỉ khó qué

2 tháng 11 2018

a) Đồ thị hàm số y = 0,5x + 2 là đường thẳng đi qua các điểm (0; 2) và (-4; 0)

Đồ thị hàm số y = 5 – 2x là đường thẳng đi qua các điểm (0; 5) và (2,5; 0)

b) Ta có A(-4; 0), B(2,5; 0)

Tìm tọa độ điểm C, ta có: phương trình hoành độ giao điểm của đường thẳng y = 0,5x + 2 và y = 5 – 2x là

0,5x + 2 = 5 – 2x ⇔ 2,5x = 3

                               ⇔ x = 1,2

Do đó y = 0,5 . 1,2 + 2 = 2,6. Vậy C (1,2; 2,6)

c) Gọi D là hình chiếu của C trên Ox ta có:

CD = 2,6; AB = AO + OB = 4 + 2,5 = 6,5 (cm)

∆ACD vuông tại D nên AC2 = CD2 + DA2

⇒AC=√2,62+5,22=√33,8≈5,81(cm)⇒AC=2,62+5,22=33,8≈5,81(cm)

 Tương tự : BC=√BD2+CD2BC=BD2+CD2

                       =√1,32+2,62=√8,45≈2,91(cm)=1,32+2,62=8,45≈2,91(cm)

d) Ta có ∆ACD vuông tại D nên tgˆCAD=CDAD=2,65,2=12tgCAD^=CDAD=2,65,2=12

 ⇒ˆCAD≈26034′⇒CAD^≈26034′. Góc tạo bởi đường thẳng y=12x+2y=12x+2 và trục Ox là 26034’

Ta có ∆CBD vuông tại D nên tgˆCBD=CDBD=2,61,3=2⇒ˆCBD≈63026′tgCBD^=CDBD=2,61,3=2⇒CBD^≈63026′ 

Góc tạo bởi đường thẳng y = 5 – 2x và trục Ox là 1800 – 63026’ ≈ 116034’

a) - Vẽ đồ thị hàm số y = 0,5x + 2 (1)

    Cho x = 0 => y = 2 được D(0; 2)

    Cho y = 0 => 0 = 0,5.x + 2 => x = -4 được A(-4; 0)

Nối A, D ta được đồ thị của (1).

- Vẽ đồ thị hàm số y = 5 – 2x (2)

    Cho x = 0 => y = 5 được E(0; 5)

    Cho y = 0 =>0 = 5 – 2x => x = 2,5 được B(2,5; 0)

Nối B, E ta được đồ thị của (2).

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ở câu a) ta tính được tọa độ của hai điểm A và B: A(-4; 0), B(2,5; 0)

Hoành độ giao điểm C của hai đồ thị là nghiệm phương trình:

    0,5x + 2 = 5 – 2x => x = 1,2

=> y = 0,5.1,2 + 2 = 2,6

=> Tọa độ C(1,2 ; 2,6)

c) AB = AO + OB = |-4| + |2,5| = 6,5 (cm)

Gọi H là hình chiếu của C trên Ox, ta có H( 1,2; 0)

Để học tốt Toán 9 | Giải bài tập Toán 9

d) Gọi α là góc hợp bởi đường thẳng y = 0,5x + 2 với tia Ox.

Ta có: tgα = 0,5 => α = 26o34'

Gọi β là góc hợp bởi đường thẳng y = 5 – 2x với tia Ox (β là góc tù).

Gọi β' là góc kề bù với β, ta có:

tgβ' = -(-2) = 2 => β' = 63o26'

=> β = 180o – 63o26' = 116o34'

26 tháng 12 2019

a) - Vẽ đồ thị hàm số y = 0,5x + 2 (1)

    Cho x = 0 => y = 2 được D(0; 2)

    Cho y = 0 => 0 = 0,5.x + 2 => x = -4 được A(-4; 0)

Nối A, D ta được đồ thị của (1).

- Vẽ đồ thị hàm số y = 5 – 2x (2)

    Cho x = 0 => y = 5 được E(0; 5)

    Cho y = 0 =>0 = 5 – 2x => x = 2,5 được B(2,5; 0)

Nối B, E ta được đồ thị của (2).

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ở câu a) ta tính được tọa độ của hai điểm A và B là A(-4 ; 0) và B (2,5 ; 0)

Hoành độ giao điểm C của hai đồ thị (1) và (2) là nghiệm của phương trình:

0,5 x + 2 = 5 - 2x

⇔ 0,5x + 2x = 5 – 2

⇔ 2,5.x = 3 ⇔ x = 1,2

⇒ y = 0,5.1,2 + 2 = 2, 6

Vậy tọa độ điểm C(1,2; 2,6).

c) AB = AO + OB = |-4| + |2,5| = 6,5 (cm)

Gọi H là hình chiếu của C trên Ox, ta có H( 1,2; 0)

Ta có: AH = AO + OH = 4 + 1,2 = 5,2

BH = BO – OH = 2,5 – 1,2 = 1,3

CH = 2,6

Để học tốt Toán 9 | Giải bài tập Toán 9

d) Gọi α là góc hợp bởi đường thẳng y = 0,5x + 2 với tia Ox.

Ta có: tgα = 0,5 => α = 26o34'

Gọi β là góc hợp bởi đường thẳng y = 5 - 2x với tia Ox

Tam giác OEB vuông tại O nên:

Để học tốt Toán 9 | Giải bài tập Toán 9

19 tháng 12 2021

a: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x-1=-x+3\\y=x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

30 tháng 11 2022

b: Tọa độ N là:

-2x+4=3x+1 và y=3x+1

=>-5x=-3 và y=3x+1

=>x=3/5 và y=3*3/5+1=9/5+1=14/5

c: tan a=a'=3

nên a=72 độ

14 tháng 12 2023

a:

loading...

b: Tọa độ điểm Q là:

\(\left\{{}\begin{matrix}2x-4=-x+4\\y=-x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=8\\y=-x+4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{8}{3}\\y=-\dfrac{8}{3}+4=\dfrac{4}{3}\end{matrix}\right.\)

Vậy: \(Q\left(\dfrac{8}{3};\dfrac{4}{3}\right)\)

Tọa độ M là:

\(\left\{{}\begin{matrix}x=0\\y=2x-4=2\cdot0-4=-4\end{matrix}\right.\)

Vậy: M(0;-4)

Tọa độ N là:

\(\left\{{}\begin{matrix}x=0\\y=-x+4=-0+4=4\end{matrix}\right.\)

vậy: N(0;4)

Q(8/3;4/3); M(0;-4); N(0;4)

\(QM=\sqrt{\left(0-\dfrac{8}{3}\right)^2+\left(-4-\dfrac{4}{3}\right)^2}=\dfrac{8\sqrt{5}}{3}\)

\(QN=\sqrt{\left(0-\dfrac{8}{3}\right)^2+\left(4-\dfrac{4}{3}\right)^2}=\dfrac{8\sqrt{2}}{3}\)

\(MN=\sqrt{\left(0-0\right)^2+\left(4+4\right)^2}=8\)

Xét ΔMNQ có 

\(cosMQN=\dfrac{QM^2+QN^2-MN^2}{2\cdot QM\cdot QN}=\dfrac{-1}{\sqrt{10}}\)

=>\(\widehat{MQN}\simeq108^026'\)

\(sinMQN=\sqrt{1-cos^2MQN}=\dfrac{3}{\sqrt{10}}\)

Diện tích tam giác MQN là:

\(S_{MQN}=\dfrac{1}{2}\cdot QM\cdot QN\cdot sinMQN\)

\(=\dfrac{1}{2}\cdot\dfrac{3}{\sqrt{10}}\cdot\dfrac{8\sqrt{5}}{3}\cdot\dfrac{8\sqrt{2}}{3}=\dfrac{32}{3}\)

 

23 tháng 4 2017

a) * Vẽ đồ thị hàm số y = 0,5x + 2 (1)

Cho x = 0, tính được y = 2 => D(0; 2) thuộc đồ thị.

Cho y = 0, 0 = 0,5.x + 2 => x = -4 => A(-4; 0) thuộc đồ thị. Đường thẳng vẽ qua A, D là đồ thị của (1).

*Vẽ đồ thị hàm số y = 5 – 2x (2)

-Cho x = 0 tính được y = 5 E(0; 5) thuộc đồ thị

-Cho y = 0, 0 = 5 – 2x => x = 2,5 => B(2,5; 0) thuộc đồ thị. Đường thẳng vẽ qua B, E là đồ thị của (2).

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ở câu a) ta tính được tọa độ của hai điểm A và B: A(-4; 0), B(2,5; 0)

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9