Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)n+2={1;2;4;8;16}
n={-1;0;2;6;14}
b)(n-4)chia hết cho(n-1)
(n-1-3) chia hết cho(n-1)
Vì (n-1)chia hết cho (n-1) suy ra -3 chia hết cho (n-1)
Vậy n-1 thuộc Ư(-3)={1;3;-1;-3}
suy ra n={1;4;0;-2}
c) 2n+8 thuộc B(n+1)
suy ra n+1 chia het cho 2n+8
suy ra 2n+2 chia het cho 2n+8
suy ra (2n+8)-6 chia het cho2n+8
Vi 2n+8 chia het cho 2n+8 nen -6 chia het cho 2n+8
suy ra 2n+8 thuộc {1;2;3;6;-1;-2;-3;-6}
mà 2n+8 là số nguyên chẵn( chẵn + chẵn = chẵn)
suy ra 2n+8 thuộc{2;6;-2;-6}
suy ra 2n thuộc{-6;-2;-10;-14}
suy ra n thuộc {-3;-1;-5;-7}
d) 3n-1 chia het cho n-2
suy ra [(3n-6)+5chia hết cho n-2
Vì 3n-6 chia hết cho n-2 suy ra 5 chia hết cho n-2
suy ra n-2 thuộc{1;5;-1;-5}
suy ra n thuộc{3;7;1;-3}
e)3n+2 chia hết cho 2n+1
suy ra [(6n+3)+1] chia hết cho 2n+1
Vì 6n+3 chia hết cho 2n+1 nên 1 chia hết cho 2n+1
suy ra 2n+1 thuộc{1;-1}
suy ra 2n thuộc {0;-2}
suy ra n thuộc {0;-1}
a) n + 11 chia hết cho n +2
n + 11 chia hết cho n + 2
Ta luôn có n+ 2 chia hết cho n+ 2
=> ( n+ 11) -( n+ 2) \(⋮\) (n +2)
=> ( n-n )+( 11- 2) \(⋮\) (n+ 2)
=> 9 chia hết cho (n+ 2)
=> Ta có bảng sau:
n+ 2 | -1 | -3 | -9 | 1 | 3 | 9 |
n | -3 | -5 | -11 | -1 | 1 | 8 |
Vì n thuộc N => n \(\in\) { 1; 8}
b) 2n - 4 chia hết cho n- 1
Ta có: (n -1 ) luôn chia hết cho (n- 1)
=> 2( n-1)\(⋮\) (n-1)
=>(2n- 2) chia hêt cho (n- 1)
=> (2n-4 )- (2n-2) chia hết cho (n-1 )
=> -2 chia hết cho ( n-1)
=> Ta có bảng sau:
n-1 | -1 | 1 | -2 | 2 |
n | 0 | 2 | -1 | 3 |
Vì n thuộc N nên n thuộc {0; 2; 3}
a) n + 1 chia hết cho n - 3
=> n - 3+ 4 chia hết cho n - 3
=> 4 chia hết cho n-3
=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}
thế n-3 vô từng trường hợp các ước của 4 rồi tim x
b) 2n + 5 chia hết cho n + 1
=> 2n + 2 + 3 chia hết cho n + 1
=> 2(n+1) + 3 chia hết cho n +1
=> 3 chia hết cho n + 1
=> n + 1 thuộc Ư(3) = {1;-1;3;-3}
tìm x giống bài a
c) 10n chia hết cho 5n - 3
=> 10n - 6 + 6 chia hết cho 5n - 3
=> 2.(5n - 3) + 6 chia hết cho 5n - 3
=> 6 chia hết cho 5n - 3
=> 5n - 3 thuộc Ư(6) = {1;-1;2;-2;3;-3;6;-6}
tìm x giống bài a
a. n+1=(n-3)+4
(n+1) chia hết cho (n-3) thì (n-3)+4 chia hết cho (n-3)
Ta có (n-3) chia hết cho (n-3)
Suy ra 4 phải chia hết cho (n-3)
Vậy n= -1 ,1 , 2 , 4
b. 2n+5=2n+2+3=2(n+1)+3
tương tự câu a ta có 2(n+1) chia hết cho (n+1)
Suy ra 3 phải chia hết cho (n+1)
Vậy n=-2,0,2
c.10n=10n-6+6=2(5n-3) +6
Tiếp tục àm tương tự như câu a và b
a) n+5 chia hết cho n-1
Ta có: n+5 = (n-1)+6
=> n-1 và 6 cùng chia hết cho n-1 hay n-1\(\in\)Ư(6)={-1;1;-2;2;-3;3;-6;6}
=> n\(\in\){0;2;-1;3;-2;4;-5;7}
b) n+5 chia hết cho n+2
Ta có: n+5 = (n+2)+3
=> n+2 và 3 cùng chia hết cho n+2 hay n+2\(\in\)Ư(3)={-1;1;-3;3;}
=> n\(\in\){-3;-1;-5;1;}
c) 2n-4 chia hết cho n+2
Ta có: 2n-4 = 2(n+2)-8
=> 2(n+2) và 8 cùng chia hết cho n+2 hay n+2\(\in\)Ư(8)={-1;1;-2;2;-4;4;-8;8}
=> n\(\in\){-3;-1;-4;0;-6;2;-10;6}
d) 6n+4 chia hết cho 2n+1
Ta có: 6n+4 = 3(2n+1)+1
=> 3(2n+1) và 1 cùng chia hết cho 2n+1 hay 2n+1\(\in\)Ư(1)={-1;1;}
=> n\(\in\){-1;0}
e) 3-2n chia hết cho n+1
Ta có: 3-2n= -2(1+n)+5
=> -2(1+n) và 5 cùng chia hết cho n+1 hay n+1\(\in\)Ư(5)={-1;1;-5;5;}
=> n\(\in\){-2;0;-6;4;}
3.(n + 2) chia hêt cho n - 2
3n + 6 chia hết cho n - 2
3n - 6 + 12 chia hết cho n - 2
3.(n - 2) + 12 chia hết cho n - 2
=> 12 chia hết cho n - 2
=> n - 2 thuộc Ư(12) = {1 ; 2 ; 3 ; 4; 6 ; 12}
Ta có bảng sau :
n - 2 | 1 | 2 | 3 | 4 | 6 | 12 |
n | 3 | 4 | 5 | 6 | 8 | 14 |
Bài 1: a) \(-2.\left(2x-8\right)+3.\left(4-2x\right)=\left(-72\right)-5.\left(3x-7\right)\)
\(-4x+16+12-6x=-72-15x+35\)
\(-4x-6x+15x=-72+35-16-12\)
\(5x=-65\)
\(x=-\frac{65}{5}\)
\(x=-13\)
b) \(3.\left|2x^2-7\right|=33\)
\(\left|2x^2-7\right|=\frac{33}{3}=11\)
\(\Rightarrow\orbr{\begin{cases}2x^2-7=11\\2x^2-7=-11\end{cases}\Rightarrow\orbr{\begin{cases}2x^2=18\\2x^2=-4\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=9\\x^2=-2\left(vl\right)\end{cases}\Rightarrow}\orbr{\begin{cases}x=\pm3\\\end{cases}}}\)
Bài 2:
Ta có: \(2n+1⋮n-3\)
\(2n-6+7⋮n-3\)
\(2\left(n-3\right)+7⋮n-3\)
Vì \(2\left(n-3\right)⋮n-3\)
Để \(2\left(n-3\right)+7⋮n-3\)
Thì \(7⋮n-3\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
n-3 | -1 | 1 | 7 | -7 |
n | 2 | 4 | 10 | -4 |
Vậy.....
hok tốt!!
MK làm phần c) còn các phần khác bn tự làm nha:
6n+4 \(⋮\)2n+1
+)Ta có:2n+1\(⋮\)2n+1
=>3.(2n+1)\(⋮\)2n+1
=>6n+3\(⋮\)2n+1(1)
+)Theo bài ta có:6n+4\(⋮\)2n+1(2)
+)Từ(1) và (2) suy ra (6n+4)-(6n+3)\(⋮\)2n+1
=>6n+4-6n-3\(⋮\)2n+1
=>1\(⋮\)2n+1
=>2n+1\(\in\)Ư(1)=1
=>2n+1=1
+)2n+1=1
2n =1-1
2n =0
n =0:2
n =0\(\in\)Z
Vậy n=0
Chúc bn học tốt
Bài giải
a) Ta có n + 5 \(⋮\)n - 1 (n \(\inℤ\))
=> n - 1 + 6 \(⋮\)n - 1
Vì n - 1 \(⋮\)n - 1
Nên 6 \(⋮\)n - 1
Tự làm tiếp.
b) Ta có 2n - 4 \(⋮\)n + 2
=> 2(n + 2) - 8 \(⋮\)n + 2
Vì 2(n + 2) \(⋮\)n + 2
Nên 8 \(⋮\)n + 2
Tự làm tiếp.
c) Ta có 6n + 4 \(⋮\)2n + 1
=> 6n + 4 - 3(2n + 1) \(⋮\)2n + 1
=> 6n + 4 - (6n + 3) \(⋮\)2n + 1
=> 1 \(⋮\)2n + 1
Tự làm tiếp
d) Ta có 3 - 2n \(⋮\)n + 1
=> -2n + 3 \(⋮\)n + 1
=> -2n - 2 + 5 \(⋮\)n + 1
=> -2(n + 1) + 5 \(⋮\)n + 1 (-2n - 2 + 5 = -2n + (-2).1 + 5 = -2(n + 1) + 5)
Vì -2(n + 1) \(⋮\)n + 1
Nên 5 \(⋮\)n + 1
Tự làm tiếp.
1) n + 3 chia hết cho n-2
(n-2) + 5 chia hết cho n-2
Mà n-2 chia hết cho n-2
=> 5 chia hết cho n-2
=> n-2 thuộc Ư(5)
Ư(5)={1,5}
n - 2 = 1
n = 3
n - 2 -= 5
n = 7
n thuộc {3,7}
a/ \(n+3⋮n-2\)
Mà \(n-2⋮n-2\)
\(\Leftrightarrow5⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(5\right)\)
Suy ra :
+) n - 2 = 1 => n = 3
+) n - 2 = 5 => n = 7
+) n - 2 = -1 => n = 1
+) n - 2 = -5 => n = -3
Vậy ............
b/ \(2n+1⋮n-3\)
Mà \(n-3⋮n-3\)
\(\Leftrightarrow\hept{\begin{cases}2n+1⋮n-3\\2n-6⋮n-3\end{cases}}\)
\(\Leftrightarrow7⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(7\right)\)
Suy ra :
+) n - 3 = 1 => n = 4
+) n - 3 = 7 => n = 10
+) n - 3 = -1 => n = 2
+) n - 3 = -7 => n = -4
Vậy ..