Chứng tỏ rằng: Đề thi học sinh giỏi môn Toán lớp 6

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2017

Vào coppy

20 tháng 10 2017

Gọi d là ước chung của n + 3 và 2n + 5 với d ∈ N

=> n + 3 ⋮ d và 2n + 5 ⋮ d

=> (n + 3) - (2n + 5) ⋮d => 2(n + 3) - (2n + 5) ⋮ d <=> 1 ⋮d => d = 1 ∈ N

=> ƯC( n + 3 và 2n + 5) = 1

=> ƯCLN (n + 3 và 2n + 5) = 1 => Đề thi học sinh giỏi môn Toán lớp 6(n ∈ N) là phân số tối giản.

P/S : Đây chỉ là ý của mk thôi nha

24 tháng 11 2016

Gọi d là ƯCLN(2n+5,n+3)(d\(\in\)N*)

Ta có:\(2n+5⋮d,n+3⋮d\)

\(\Rightarrow2n+5⋮d,2\cdot\left(n+3\right)⋮d\)

\(\Rightarrow2n+5⋮d,2n+6⋮d\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vì ƯCLN(2n+5,n+3)=1

\(\Rightarrow\frac{2n+5}{n+3}\) là phân số tối giản

 

Gọi d là ƯCLN(2n+5,n+3)(d

N*)

Ta có:2n+5⋮d,n+3⋮d

 

⇒2n+5⋮d,2⋅(n+3)⋮d

 

⇒2n+5⋮d,2n+6⋮d

 

⇒(2n+6)−(2n+5)⋮d

 

⇒1⋮d⇒d=1

 

Vì ƯCLN(2n+5,n+3)=1

20 tháng 10 2017

Đề thi học sinh giỏi môn Toán lớp 6

Vậy ...

Chúc các bn hok tốt

20 tháng 10 2017

Ta có :

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

...................................

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}< 1\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\) (đpcm)

24 tháng 11 2016

Đặt A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

A=\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{100\cdot100}\)

A<\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

A<\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

A<\(1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

24 tháng 11 2016

Ta có : \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

Đặt : \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)

Vì : \(A< 1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

Vậy ...

24 tháng 11 2016

Ta có :

\(\begin{cases}\frac{1}{2^2}< \frac{1}{1.2}\\\frac{1}{3^2}< \frac{1}{2.3}\\.....\\\frac{1}{100^2}< \frac{1}{99.100}\end{cases}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< 1\)

24 tháng 11 2016

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

..........................

\(\frac{1}{100^2}=\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(1-\frac{1}{100}< 1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

 

 

7 tháng 2 2018

a+4b chia hết cho 13 suy ra 10(a+4b) cũng chia hết cho 13

mà 10(a+4b)=10a+40b=10a+b+39b

xét tổng trên thấy 39b chia hết cho 13 suy ra 10a+b chia hết cho 13

7 tháng 2 2018

Ta có \(a+4b⋮13\)

\(\Rightarrow10.\left(a+4b\right)⋮13\)

\(\Rightarrow10a+40b⋮13\)

\(\Rightarrow10a+b+39b⋮13\)

Vì 39b chia hết cho 13 và 10a +b + 39b chia hết cho 13 

Khi đó 10a + b chia hết cho 13 

Vậy....

7 tháng 2 2018

ta có a+4b chia hết cho 13 
=> a+4b+13a sẽ chia hết cho 13 
hay 14a+4b chia hết cho 13 
=> 4(10a+b)chia hết cho 13 
mà 4 ko chia hết cho 13 nên 10a+b chia hết cho 13

7 tháng 8 2020

B= bao nhiêu,để thế chịu

7 tháng 8 2020

Vào trang cá nhân của mình đi, có cái này hay lắm, nhớ kb vs mình nha