Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^0+2^1+2^2+2^3+....+2^{100}=\left(2^1+2^2+2^3+2^4\right)+.......+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)+1\)\(=2.15+2^5.15+....+2^{97}.15+1=15.\left(2+2^5+....+2^{97}\right)+1\)
Vậy tổng chia cho 15 thì dư 1
A = (2^1+2^2+2^3+2^4) + ..... + (2^97 + 2^98 + 2^99 +2^100) + 1
A = 15.2 + 15.2^5+....+2^97.15 + 1
A = 15.(2+2^5+....+2^97) + 1
Vậy A chia 15 dư 0
Ta có:24=16 đồng dư với 1(mod 15)
=>(24)25=2100 đồng dư với 125(mod 15)
=>2100 đồng dư với 1(mod 15)
=>2100 chia 15 dư 1
=>20+21+..........+2100 chia 15 dư 1
A = (2 + 2^2+2^3+2^4) + .... + (2^97 + 2^98 + 2^99 + 2^100) + 1
= 2.15 + 2^5.15+...+2^97.15 + 1
=15.(2+2^5 + 2^97) + 1
chia 15 dư 1
A = (2^1+2^2+2^3+2^4) +........ + (2^97 + 2^98 + 2^99 + 2^100) + 1
A = 2.15 + 2^5.15+...+2^97.15
A = 15.(2+2^5+...+2^7)
A chia hết cho 15
A= 20 + 21+ 22 +23 + ....+ 2100=(20+21+22+23)+(24+25+26+27)+...+(296+297+298+299)+2100
=15+24.(1+2+22+23)+...+296.(1+2+22+23)+2100
=15+24.15+...+296.15+2100
=15.(1+24+...+296)+2100
Vậy A chia cho 15 dư 2100
A=1+(21+22+23+24)+...+(297+298+299+2100)
A=1+2(1+2+22+23)+...+297(1+2+22+23)
A=1+(1+2+22+23)(2+...+297)
A=1+15(2+...+297)
Mà 15(2+...+297) chia hết cho 15
=> A chia 15 dư 1
Xét : A=2^0+2^1+^2+2^3+2^4+2^5+2^6+....+2^100=(2^0+2^1+2^2+2^3+2^42^5)+(2^6+2^7+2^8+2^9+2^10)+....+(2^96+2^97+2^98+2^99+2^100)=2^0(1+2+2^2+2^3)+2^6(1+2+2^2+2^3)+...+2^96(1+2+2^2+2^3)=2^0 .15+2^6.15+...+2^96 .15=15(2^0+2^6+....+2^96) chia hết cho 15
Vậy : A chia cho 15 dư 0
TÍCH ĐI BẠN ƠI !
\(A=2^0+2^1+2^2+.....+2^{100}\)
\(\Rightarrow A=2A-A=1-2^{101}\)
\(\Rightarrow A:15=..............\)dư 1