Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{6}{2x}+\dfrac{6}{y}=\dfrac{1}{4}\)
\(\Leftrightarrow6\left(\dfrac{1}{2x}+\dfrac{1}{y}\right)=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{2x}+\dfrac{1}{y}=\dfrac{1}{24}^{\left(1\right)}\)
Lại có: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}^{\left(2\right)}\)
Lấy (2) trừ (1) ta có:
\(\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{1}{2x}-\dfrac{1}{y}=\dfrac{1}{16}-\dfrac{1}{24}\)
\(\Leftrightarrow\dfrac{2-1}{2x}=\dfrac{1}{48}\)
\(\Leftrightarrow\dfrac{1}{2x}=\dfrac{1}{48}\)
=> 2x = 48
<=> x = 24
Thay x = 24 vào (2) ta có:
\(\dfrac{1}{24}+\dfrac{1}{y}=\dfrac{1}{16}\)
\(\Leftrightarrow\dfrac{1}{y}=\dfrac{1}{48}\)
=> y = 48
Vậy ...
Ta có: \(\dfrac{3}{x}\) + \(\dfrac{6}{y}\) = \(\dfrac{1}{4}\)
<=> 3(\(\dfrac{1}{x}\) + \(\dfrac{2}{y}\) ) = \(\dfrac{1}{4}\)
<=> \(\dfrac{1}{x}\) + \(\dfrac{2}{y}\) = \(\dfrac{1}{12}\) (1)
Mặt khác: \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\) = \(\dfrac{1}{16}\) (2)
Trừ (2) cho (1) vế theo vế ta được:
\(\dfrac{1}{x}\) + \(\dfrac{2}{y}\) - \(\dfrac{1}{x}\) - \(\dfrac{1}{y}\) = \(\dfrac{1}{12}\) - \(\dfrac{1}{16}\)
<=> \(\dfrac{1}{y}\) = \(\dfrac{1}{48}\) <=> y = 48
Thay y =48 vào (2) ta có: \(\dfrac{1}{x}\) + \(\dfrac{1}{48}\) = \(\dfrac{1}{16}\)
<=> \(\dfrac{1}{x}\) = \(\dfrac{1}{24}\) <=> x = 24
Vậy x =24 ; y =48
Bài 1:
a: \(5x^3-x^2-5x+1\)
\(=x^2\left(5x-1\right)-\left(5x-1\right)\)
\(=\left(5x-1\right)\left(x-1\right)\left(x+1\right)\)
b: \(x^2+4xy+4y^2-9\)
\(=\left(x+2y\right)^2-9\)
\(=\left(x+2y+3\right)\left(x+2y-3\right)\)
c: \(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
1.A=\(\frac{x^4-2x^2+1}{x^3-3x-2}\)
A có nghĩa \(\Leftrightarrow x^3-3x-2\ne0\Leftrightarrow\left(x+1\right)^2\left(x-2\right)\ne0\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)
2 .A = \(\frac{x^4-2x^2+1}{x^3-3x-2}\)=\(\frac{\left(x^2-1\right)^2}{\left(x+1\right)^2\left(x-2\right)}=\frac{\left(x+1\right)^2\left(x-1\right)^2}{\left(x+1\right)^2\left(x-2\right)}=\frac{\left(x-1\right)^2}{x-2}\)
A<1\(\Rightarrow\frac{\left(x-1\right)^2}{x-2}-1< 0\Rightarrow\frac{x^2-2x+1-x+2}{x-2}< 0\)
\(\Rightarrow\frac{x^2-3x+3}{x-2}< 0\Rightarrow x-2< 0\)vì \(x^2-3x+3=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy x<2 thỏa mãn yêu cầu A<1
Ta có :
\(\Rightarrow2\left(5x-2\right)=3\left(5-3x\right)\)
\(\Leftrightarrow10x-4=15-9x\)
\(\Leftrightarrow10x+9x=15+4\)
=> 19x = 19
=> x = 1
Ta có :
\(\Leftrightarrow\frac{10x+3}{12}=\frac{9}{9}+\frac{6+8x}{9}\)
\(\Leftrightarrow\frac{10x+3}{12}=\frac{15+8x}{9}\)
=> (10x + 3)9 = (15 + 8x).12
=> 90x + 27 = 180 + 96x
=> 90x - 96x = 180 - 27
=> -6x = 153
=> -x = 25,5
=> x = -25,5
Bài này có trong violympic lớp 8 vòng 15 đúng không mình thi rồi:
Bạn quy đồng vế bên trái đi xong nhân chéo với vế bên phải.
Chuyển vế đôit dáu bạn sẽ được: 36x^2 + 16y^2 + 6z^2 = 0
=> x = y = z = 0
nhé!
7
chỉ mk cách làm với