K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Vì AB//CD

nên \(\dfrac{S_{ABC}}{S_{ADC}}=\dfrac{AB}{DC}=\dfrac{1}{3}\)

=>\(S_{ADC}=3\times S_{ABC}\)

\(S_{ABC}+S_{ADC}=S_{ABCD}\)

=>\(4\times S_{ABC}=24\)

=>\(S_{ABC}=6\left(cm^2\right)\)

b: Vì AB//CD

nên ΔMAB~ΔMDC

=>\(\dfrac{S_{MAB}}{S_{MDC}}=\left(\dfrac{AB}{CD}\right)^2=\dfrac{1}{9}\)

=>\(\dfrac{S_{MAB}}{S_{ABCD}}=\dfrac{1}{8}\)

=>\(S_{MAB}=\dfrac{S_{ABCD}}{8}=\dfrac{24}{8}=3\left(cm^2\right)\)

30 tháng 5 2024

Anh có hình ko ạ ?

24 tháng 7 2016

KHÔNG BIẾT LÀM

26 tháng 6 2017

= 2 cm2 nha ban

13 tháng 7 2017

2 cm2 nha bn

k mk nhé

4 tháng 12 2019

28 tháng 7 2023

8cm2

27 tháng 6 2019

a.  S A B C   =   1 3 S A D C (Vì cùng chung chiều cao của hình thang ABCD; đáy AB = 1 3 DC)

b.  S A B M   =   S A C M (Vì cùng chung đáy MA, chiều cao AB = 1 3 DC )

c. Theo phần a, ta có: S A B C   =   S A D C

Mà S A B C D   =   S A B C   +   S A D C

Nên S A B C   = 1 1 + 3 S A B C D   = 1 4 S A B C D

Do đó S A B C D   =   64 × 1 4 =   16   ( c m 2 )

Theo phần b, ta có: S A B M   = 1 3 S A C M

Mà S A C M   =   S M A B   +   S A B C

Nên S M A B   = 1 3 - 1 S A B C     = 1 2 S A B C

Do đó S M A B   =   16 × 1 4 =   8   ( c m 2 )

1,Cho hình thang vuông ABCD vuông góc tại A và D,đáy lớn CD gấp 3 lần đáy nhỏ AB. Kéo dài DA và CB cắt nhau tại M.a,So sánh diện tích hai tam giác ABC và ADCb,So sánh diện tích hai tam giác ABM và ACMc,Biết diện thích hình thang ABCD bằng 64 cm2. Tính diện tích tam giác MBA. 2,Trên hình vẽ ABCD là hình thang.a,Hãy tìm các hình tam giác có diện tích bằng nhaub,Diện tích hình thang 16m2 và hiệu hai đáy của nó bằng...
Đọc tiếp

1,Cho hình thang vuông ABCD vuông góc tại A và D,đáy lớn CD gấp 3 lần đáy nhỏ AB. Kéo dài DA và CB cắt nhau tại M.
a,So sánh diện tích hai tam giác ABC và ADC
b,So sánh diện tích hai tam giác ABM và ACM
c,Biết diện thích hình thang ABCD bằng 64 cm2. Tính diện tích tam giác MBA. 
2,Trên hình vẽ ABCD là hình thang.
a,Hãy tìm các hình tam giác có diện tích bằng nhau
b,Diện tích hình thang 16m2 và hiệu hai đáy của nó bằng 4m. Tính độ dài mỗi đáy hình thang. Biết rằng khi giảm đáy lớn 1m thì diện tích hình thang giảm 1m2.
3,Cho tam giác ABC. P là trung điểm của cạnh BC; nối AP,trên AP lấy điểm M,N sao cho AM = MN = NP. Biết diện tích tam giác NPC = 60 cm2
a,Tính diện tích các tam giác AMC,MNC,ABP
b,Kéo dài BN cắt AC ở Q. Chứng tỏ rằng Q là trung điểm của cạnh AC.
4,Cho tam giác ABC có MC = 1/4 BC,BK là đường cao của tam giác ABC,MH là đường cao của tam giác AMC có AC là đáy chung. So sánh độ dài BK và MH?

5
13 tháng 12 2016

Ko biết, chắt bàng 1.3,2.3,3.5,4.17

11 tháng 1 2017

KO BIET LAM

8 tháng 11 2017

23 tháng 5 2022

M B E C D A

Hai tg ABC và tg ACD có đường cao từ C->AB = đường cao từ A->CD nên

\(\dfrac{S_{ABC}}{S_{ACD}}=\dfrac{AB}{CD}=\dfrac{1}{3}\Rightarrow S_{ACD}=3xS_{ABC}\)

\(\Rightarrow S_{ABCD}=S_{ABC}+S_{ACD}=S_{ABC}+3xS_{ABC}=4xS_{ABC}\)

\(\Rightarrow S_{ABC}=\dfrac{1}{4}xS_{ABCD}\)

Kéo dài AB, từ C dựng đường thẳng song song với AD cắt AB kéo dài tại E => AECD là hình chữ nhật

\(\Rightarrow AE=CD\Rightarrow AB=\dfrac{1}{3}CD=\dfrac{1}{3}AE\Rightarrow AB=\dfrac{1}{2}xBE\)

Hai tg ABC và tg EBC có chung đường cao từ C->AB nên

\(\dfrac{S_{ABC}}{S_{EBC}}=\dfrac{AB}{BE}=\dfrac{1}{2}\)

Hai tg này có chung BC nên 

\(\dfrac{S_{ABC}}{S_{EBC}}=\) đường cao từ A->BC = đường cao từ E->BC\(=\dfrac{1}{2}\)

Hai tg AMC và tg EMC có chung MC nên

\(\dfrac{S_{AMC}}{S_{EMC}}=\)đường cao từ A->BC = đường cao từ E->BC\(=\dfrac{1}{2}\)

Hai tg AMC và tg AME có chung AM và đường cao từ C->AD = đường cao từ E->AD nên

\(S_{AMC}=S_{AME}\Rightarrow\dfrac{S_{AME}}{S_{EMC}}=\dfrac{1}{2}\)

Hai tg AME và tg EMC có đường cao từ C->AD = đường cao từ M->EC nên

\(\dfrac{S_{AME}}{S_{EMC}}=\dfrac{AM}{EC}=\dfrac{1}{2}\)

Hai tg MAB và tg ABC có chung AB nên

\(\dfrac{S_{MAB}}{S_{ABC}}=\) đường cao từ A->AB / đường cao từ C->AB = \(\dfrac{AM}{EC}=\dfrac{1}{2}\)

\(\Rightarrow S_{MAB}=\dfrac{1}{2}xS_{ABC}=\dfrac{1}{2}x\dfrac{1}{4}xS_{ABCD}=\dfrac{1}{8}xS_{ABCD}=2,5cm^2\)

30 tháng 12 2017