\(\Delta\)ABC và \(\Delta\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

có nhiều trường hợp lắm, nên mik làm 2 cáh thui nha:

Cách 1: trường hợp cạnh - cạnh - cạnh

Ta có:    AB = DE

              BC = EF

vậy cần: AC = DF

Cách 2: trường hợp cạnh - góc - cạnh

 Ta có:    AB = DE

               BC = EF

Vậy cần \(\widehat{ABC}=\widehat{DEF}\)

hok tốt!!

19 tháng 3 2020

để tam giác ABC= tam giác DEF theo trường hợp c-c-c thì ta cần thêm điều kiện AC=DF

...............................................................................c-g-c..........................................góc A = góc D

Chúc bạn học tốt

19 tháng 11 2017

A B C D E F M K

a.Xét \(\Delta ABC\)và \(\Delta DEF\)có:

AB=DE và AC=DF(gt)

\(\widehat{BAC}=\widehat{DEF}\)(gt) chỗ này đề bn sai

=> \(\Delta ABC=\Delta DEF\left(cgc\right)\)

b. vì 2 tam giác = nhau 

=> BC=EF(2 cạnh tương ứng)

Mà  M và K lần lượt là trung điểm của BC và EF.

=> CM=FK

c.Vì 2 tam giác ABC và DEF bằng nhau nên:

\(\widehat{ACB}=\widehat{DFE}\)(2 góc tương ứng)

Xét \(\Delta ACM\)và \(\Delta DFK\)có:

AC=DF(gt)

\(\widehat{ACB}=\widehat{DFE}\)(ch/m trên)

CM=FK(ch/m trên)

=>\(\Delta ACM\)=\(\Delta DFK\)(cgc)

=> AM =DK(2 cạnh tương ứng)

19 tháng 11 2017

đề có chút sai hay sao ý

11 tháng 12 2021

a) ΔABD=ΔEBDΔABD=ΔEBD

b) AH//DE;ΔADIAH//DE;ΔADI cân 

c) AE là tia phân giác của ˆHACHAC^

d) DC = 2AI

Giải thích các bước giải:

a) BD là phân giác của ˆABCABC^
⇒ˆABD=ˆEBD⇒ABD^=EBD^
Xét ΔABDΔABD và ΔEBDΔEBD có:
ˆBAD=ˆBED=900BAD^=BED^=900
BD chung
ˆABD=ˆEBDABD^=EBD^ (cmt)
⇒ΔABD=ΔEBD⇒ΔABD=ΔEBD (cạnh huyền - góc nhọn) (*)
b) AH⊥BC;DE⊥BCAH⊥BC;DE⊥BC
⇒AH//ED⇒AH//ED
⇒ˆAID=ˆIDE⇒AID^=IDE^
Từ (*)⇒ˆADI=ˆIDE⇒ADI^=IDE^
⇒ˆAID=ˆADI⇒AID^=ADI^
⇒ΔAID⇒ΔAID cân tại A
c) Từ (*)⇒AB=BE⇒AB=BE (hai cạnh tương ứng)
⇒ΔABE⇒ΔABE cân tại B
AE∩BD=KAE∩BD=K
⇒BK⇒BK vừa là phân giác vừa là đường cao
⇒BK⊥AE⇒BK⊥AE
Xét ΔAIDΔAID cân tại A có AK⊥IDAK⊥ID
⇒AK⇒AK vừa là đường cao vừa là đường phân giác
⇒AE⇒AE là tia phân giác ˆHACHAC^
d) ΔAIDΔAID cân tại A
⇒AI=AD⇒AI=AD
BD là phân giác của ˆABCABC^
⇒ABAC=ADDC=AIDC⇒ABAC=ADDC=AIDC
Để DC=2AI thì AIDC=ABAC=12⇒AC=2ABAIDC=ABAC=12⇒AC=2AB

7 tháng 11 2016

1/ Ta có: tam giác ABC = tam giác DEF

=> góc A = góc D

góc B = góc E

góc C = góc F

Ta có: góc A + góc B + góc C = 1800

1300 + góc C = 1800

góc C = 1800-1300 = 500

Ta có: góc A + góc B = 1300

góc A + 550 = 1300

góc A = 1300 - 550 =750

Vậy góc A = góc D = 750

góc B = góc E = 550

góc C = góc F = 500

2/ Ta có: tam giác DEF = tam giác MNP

=> DE = MN

EF = NP

FD = PM

Ta có: EF + FD = 10 cm

Mà NP - MP = EF - FD = 2 cm

EF = (10 + 2) : 2 = 6 (cm)

FD = (10 - 2) : 2 = 4 (cm)

Vậy DE = MN = 3 cm

EF = NP = 6 cm

FD = MP = 4 cm

7 tháng 11 2016

1) Ta có: ( \(\widehat{A}\) + \(\widehat{B}\)) + \(\widehat{C}\) = 180o

hay 130o + \(\widehat{C}\) = 180o

\(\Rightarrow\) \(\widehat{C}\) = 180o - 130o = 50o

Vì ΔABC = ΔDEF nên ta có:

\(\widehat{C}\) = \(\widehat{F}\) = 50o

\(\widehat{E}\) = \(\widehat{B}\) = 55o

Ta có: \(\widehat{A}\) + \(\widehat{B}\) = 130o hay \(\widehat{A}\) + 55o = 130o

\(\Rightarrow\) \(\widehat{A}\) = 130o - 55o = 75o

\(\Leftrightarrow\) \(\widehat{A}\) = \(\widehat{D}\) = 75o

Vậy: \(\widehat{A}\) = \(\widehat{D}\) = 75o

\(\widehat{B}\) = \(\widehat{E}\) = 55o

\(\widehat{C}\) = \(\widehat{F}\) = 50o

2) ΔDEF = ΔMNP nên:

\(\Rightarrow\) DE = MN

EF = NP

FD = PM

Ta có: EF + FD = 10cm

mà ΔDEF = ΔMNP

\(\Rightarrow\) NP - MP = EF - FD = 2cm

\(\Rightarrow\) EF = \(\frac{10+2}{2}\) = 6cm

FD = 6cm - 2cm = 4cm

Vậy: DE= MN = 3cm

EF = NP = 6cm

FD = PM = 4cm

chưa hiểu đề lắm bạn ơi

chưa sủa lại đề mà bạn

Bài 1: 

ΔABC=ΔDEF

nên \(\widehat{A}=\widehat{D}=90^0;\widehat{B}=\widehat{E};\widehat{C}=\widehat{F}\)

mà \(\widehat{B}-\widehat{C}=20^0\)

nên \(\widehat{E}-\widehat{F}=20^0\)

mà \(\widehat{E}+\widehat{F}=90^0\)

nên \(\widehat{E}=\dfrac{1}{2}\left(20^0+90^0\right)=55^0\)

=>\(\widehat{F}=35^0\)

20 tháng 11 2017

(Hình ảnh mang tính chất minh họa)
A D B M C E K F

a) *Xét \(\Delta ABC\)\(\Delta DEF\) có:

\(\left\{{}\begin{matrix}AB=DE\left(gt\right)\\\widehat{BAC}=\widehat{EDF}\left(gt\right)\\AC=DF\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta ABC=\Delta DEF\left(c-g-c\right)\)

b) Vì \(\Delta ABC=\Delta DEF\left(cmt\right)\)

Mà M và K lần lượt là trung điểm của BC và EF

\(\Rightarrow CM=FK\)

c) Vì \(\Delta ABC=\Delta DEF\left(cmt\right)\)

\(\Rightarrow\widehat{ACB}=\widehat{DFE}\) (Hai góc tương ứng)

*Xét \(\Delta ACM\)\(\Delta DFK\) có:

\(\left\{{}\begin{matrix}AC=DF\left(gt\right)\\\widehat{ACM}=\widehat{DFK}\left(cmt\right)\\CM=FK\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta ACM=\Delta DFK\left(c-g-c\right)\)

\(\Rightarrow AM=DK\) (hai góc tương ứng)

19 tháng 11 2017

Góc BAC = góc EDF chứ

25 tháng 9 2019

giúp mình vs các bạn ơi

25 tháng 11 2016

A D K B C 1 2

Giải:
Ta có: AB = AC

           AB = AK

           AC = AD

=> AD = AK (1)

Xét \(\Delta ABK\) có: \(\widehat{BAK}=\widehat{BAC}+\widehat{A_2}=\widehat{BAC}+90^o\)

Xét \(\Delta ACD\) có: \(\widehat{DAC}=\widehat{BAC}+\widehat{A_1}=\widehat{BAC}+90^o\)

\(\Rightarrow\widehat{BAK}=\widehat{DAC}\left(=\widehat{BAC}+90^o\right)\)(2)

Xét \(\Delta ABK,\Delta ACD\) có:

\(AB=AC\left(gt\right)\)

\(\widehat{BAK}=\widehat{DAC}\) ( theo (2) )

\(AD=AK\) ( theo (1) )

\(\Rightarrow\Delta ABK=\Delta ACD\left(c-g-c\right)\) ( đpcm )