Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-y^2-2x-2y=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(x-y-2\right)\)
b) \(18m^2-36mn+18n^2-72p^2=18\left(m^2-2mn+n^2-4p^2\right)=18\left[\left(m-n\right)^2-4p^2\right]\\ =18\left(m-n+2p\right)\left(m-n-2p\right)\)
c) \(2x^2-5x+7=2x^2+2x-7x-7=2x\left(x+1\right)-7\left(x+1\right)=\left(x+1\right)\left(2x-7\right)\)
d) \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-24\)
\(=\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(\cdot x-3\right)\right]-24\)
\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)-24\)
Đặt \(x^2+5x+5=t\) pt trở thành:
\(\left(t-1\right)\left(t+1\right)-24=t^2-1-24=t^2-25=\left(t-5\right)\left(t+5\right)\)
Thay vào bên trên
c, =(5x)^3 + (y^2)^ 3 = (5x+y^2)(25x^2 - 5xy^2 + y^4)
d, = (0,5.(a+1))^3-1^3 = ( 0,5(a+1) - 1 ) ( 0,25(a+1) ^2 +a,5(a+1) + 1)
e,2x( x+ 1 ) + 2(x+ 1 ) = 2(x+1)(x+1) = 2(x+1)^2
g, y^2 (x^2 + y) - zx^2 - zy = x^2.y^2 - z.x^2 + y^3 - zy = x^2 (y^2 - z) + y (y^2 -z) = (x^2 +y) (y^2 -z)
h,4.x(x-2y) + 8.y(2y -x) = 4x( x- 2 y ) -8 (x - 2y) = (4x - 8) (x-2y)=4(x-2)(x-2y)
k,=(x+1)(3x(x+1)-5x+7) =(x+1) (3x^2 +3x - 5x + 7)
1, a ( a - b ) ( a + b ) - ( a + b ) ( a2 - ab + b2 )
= ( a + b ) [ a ( a - b ) - ( a2 - ab + b2 )
= ( a + b ) ( a2 - ab - a2 + ab - b2 )
= ( a + b ) b2
.......
2, 3x ( x + 7 )2 - 11x2 ( x + 7 ) + 9 ( x + 7 )
= ( x + 7 ) [( 3x ( x + 7 ) - 11x2 + 9 ]
= ( x + 7 ) ( 3x3 + 21x - 11x2 + 9)
= ( x + 7 ) ( - 8x2 + 21x + 9 )
..........
3, 4x ( x - 2y ) + 8y ( 2y - x )
= 4x ( x - 2y ) - 8y ( x - 2y )
= ( 4x - 8y ) ( x - 2y )
= 4 ( x - 2y ) ( x - 2y )
= 4 ( x - 2y )2
1) \(x^6-x^4-9x^3+9x^2\)
\(=x^2\left(x^4-x^2-9x+9\right)\)
\(=x^2\left[x^2\left(x^2-1\right)-9\left(x-1\right)\right]\)
\(=x^2\left(x-1\right)\left[x^2\left(x+1\right)-9\right]\)
\(=x^2\left(x-1\right)\left(x^3+x^2-9\right)\)
2) \(x^4-4x^3+8x^2-16x+16\)
\(=x^2\left(x^2+4\right)-4x\left(x^2+4\right)+4\left(x^2+4\right)\)
\(=\left(x^2+4\right)\left(x-2\right)^2\)
3) \(x^4-25x^2+20x-4=x^4+5x^3-2x^2-5x^3-25x^2+10x+2x^2+10x-4\)
\(=x^2\left(x^2+5x-2\right)-5x\left(x^2+5x-2\right)+2\left(x^2+5x-2\right)\)
\(=\left(x^2+5x-2\right)\left(x^2-5x+2\right)\)
4) \(5x\left(x-2y\right)+2\left(2y-x\right)^2\)\(=5x\left(x-2y\right)+2\left(x-2y\right)^2=\left(x-2y\right)\left(5x+2x-4y\right)=\left(x-2y\right)\left(7x-4y\right)\)
5) \(x^2\left(x^2-6\right)-x^2+9=x^4-7x^2+9\)
\(=x^4+x^3-3x^2-x^3-x^2+3x-3x^2-3x+9\)
\(=x^2\left(x^2+x-3\right)-x\left(x^2+x-3\right)-3\left(x^2+x-3\right)\)
\(=\left(x^2+x-3\right)\left(x^2-x-3\right)\)
6) \(7x\left(y-4\right)^2-\left(4-y\right)^3=7x\left(y-4\right)^2+\left(y-4\right)^3=\left(y-4\right)^2\left(7x+y-4\right)\)
7) \(x^3+2x^2-6x-27=x^3-3x^2+5x^2-15x+9x-27\)
\(=x^2\left(x-3\right)+5x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)\left(x^2+5x+9\right)\)
\(x^8+x^7+1\)
\(=\left(x^8-x^6+x^5-x^3+x^2\right)+\left(x^7-x^5+x^4-x^2+x\right)+\left(x^6-x^4+x^3-x+1\right)\)
\(=x^2\left(x^6-x^4+x^3-x+1\right)+x\left(x^6-x^4+x^3-x+1\right)+\left(x^6-x^4+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
56B
57B
58B
56.B
57.B
58.B