Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình chỉ phân tích thôi
a) 6x(4-x)+x-4
=6x(4-x)-(4-x)
=(6x-1)(4-x)
c) 25x^2-10x+1-16z^2
=(5x-1)^2-16z^2
=(5x-1-4z)(5x-1+4z)
ban xem lại đề bài câu b đi chắc là sai đó
còn các câu trên bạn tự làm nhé
Thực hiện phép tính:
a) (2x-3y)(4x2+6xy+9y2)
=8x3-27y3
b) (6x3+3x2+4x+2):(3x2+2)
=(3x2+2)(2x+1):(3x2+2)
=2x+1
c) (x+2)2+(3-x)-2(x+3)(x-3)
=x2+4x+4+3-x-2x2+18
=-x2+4x+25
Bài 2:
a: 6x(4-x)+(x-4)
=6x(4-x)-(4-x)
=(4-x)(6x-1)
b: \(=x^2-1+y\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(1+y\right)=\left(y+1\right)\left(x+1\right)\left(x-1\right)\)
c: \(=\left(5x-1\right)^2-\left(4z\right)^2\)
=(5x-1-4z)(5x-1+4z)
\(\frac{4}{x+2}+\frac{3}{x-2}+\frac{-5x-2}{x^2-4}\)ĐK : \(x\ne\pm2\)
\(=\frac{4\left(x-2\right)+3\left(x+2\right)-5x-2}{\left(x+2\right)\left(x-2\right)}=\frac{4x-8+3x+6-5x-2}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{2x-4}{\left(x+2\right)\left(x-2\right)}=\frac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2}{x+2}\)
\(\frac{\left(x-3\right)^3}{3x^2}:\frac{x^2-6x+9}{6x}\)
\(=\frac{\left(x-3\right)^3}{3x^2}.\frac{6x}{\left(x-3\right)^2}\)
\(=\frac{2\left(x-3\right)}{x}\)
\(=\frac{2x-6}{x}\)
#H
Trả lời:
\(\frac{\left(x-3\right)^3}{3x^2}:\frac{x^2-6x+9}{6x}\)
\(=\frac{\left(x-3\right)^3}{3x^2}.\frac{6x}{x^2-6x+9}\)
\(=\frac{\left(x-3\right)^3}{3x^2}.\frac{6x}{\left(x-3\right)^2}\)
\(=\frac{\left(x-3\right)^3.6x}{3x^2.\left(x-3\right)^2}\)
\(=\frac{2\left(x-3\right)}{x}\)
\(a,\dfrac{x+1}{5}-\dfrac{2}{x}\)
\(=\dfrac{x\left(x+1\right)-2.5}{5x}=\dfrac{x^2+x-10}{5x}\)
\(b,\dfrac{x+y}{9x}:\dfrac{x+y}{3x}\)
\(=\dfrac{x+y}{9x}.\dfrac{3x}{x+y}=\dfrac{1}{3}\)
a. \(\dfrac{x+1}{5}\)-\(\dfrac{2}{x}\)=\(\dfrac{x\left(x+1\right)-2.5}{5x}\)=\(\dfrac{x^2+x-10}{5x}\)
b. \(\dfrac{x+y}{9x}:\dfrac{x+y}{3x}\)=\(\dfrac{x+y}{9x}.\dfrac{3x}{x+y}=\dfrac{1}{3}\)
\(\left(\dfrac{x-2}{x+2}+\dfrac{6x-4}{x^2-4}\right):\dfrac{x+1}{x-2}\)
\(=\dfrac{x^2-4x+4+6x-4}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x-2}{x+1}\)
\(=\dfrac{x^2+2x}{x+2}\cdot\dfrac{1}{x+1}=\dfrac{x}{x+1}\)