Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5\sqrt{16}-4\sqrt{9}+\sqrt{25}-0,3\sqrt{400}\)
\(=20-12+5-6\)
\(=7\)
Ý của bạn là \(\left(5\sqrt{16}\right)-\left(4\sqrt{9}\right)+\left(\sqrt{25}\right)-\left(0,3\sqrt{400}\right)\)phải k???
\(\left(5\sqrt{16}\right)-\left(4\sqrt{9}\right)+\left(\sqrt{25}\right)-\left(0,3\sqrt{400}\right)\)
\(=\left(5.4\right)-\left(4.3\right)+5-\left(0,3.20\right)\\ =20-12+5-6\\ =8+5-6\\ =13-6\\ =7\)
Chúc các bạn học tốt
a) Ta có : \(x=\sqrt{40+2}=\sqrt{42}< \sqrt{49}=7\) (1)
\(y=\sqrt{40}+\sqrt{2}>\sqrt{36}+\sqrt{1}=6+1=7\) (2)
Từ (1) và (2) => x = y
b) Ta có : \(x=\sqrt{625}-\frac{1}{\sqrt{5}}=25-\frac{1}{\sqrt{5}}\) (1)
\(y=\sqrt{576}-\frac{1}{\sqrt{6}}+1=24-\frac{1}{\sqrt{6}}+1=25-\frac{1}{\sqrt{6}}\) (2)
Vì \(\sqrt{5}< \sqrt{6}\)nên \(\frac{1}{\sqrt{5}}>\frac{1}{\sqrt{6}}\)(3)
(1),(2),(3) => \(x>y\)
- Ta có: \(A=\frac{\sqrt{x+1}}{\sqrt{x-1}}\)
- Thay \(x=\frac{16}{9}\)vào đa thức \(A,\)ta có:
\(A=\frac{\sqrt{\frac{16}{9}+1}}{\sqrt{\frac{16}{9}-1}}\)
\(\Leftrightarrow A=\frac{\sqrt{\frac{25}{9}}}{\sqrt{\frac{7}{9}}}\)
\(\Leftrightarrow A=\frac{5\sqrt{7}}{7}\)
Vậy \(A=\frac{5\sqrt{7}}{7}\)
Thay x = 16/9 vào biểu thức, ta có:
\(\frac{\sqrt{\frac{16}{9}+1}}{\sqrt{\frac{16}{9}-1}}=\frac{\sqrt{\frac{25}{9}}}{\sqrt{\frac{7}{9}}}=\frac{\frac{5}{3}}{\frac{\sqrt{7}}{3}}=\frac{5\sqrt{7}}{5}\)
a: \(\dfrac{\sqrt{81}}{\sqrt{16}}=\dfrac{9}{4}=\dfrac{36}{16}< \dfrac{81}{16}\)
b: \(\sqrt{16+25}=\sqrt{41}< 9=\sqrt{16}+\sqrt{25}\)