K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 8 2020

a/ Hàm xác định trên R

\(y\left(-x\right)=sin^2\left(-2x\right)+1=sin^22x+1=y\left(x\right)\)

Hàm chẵn

b/ Hàm xác định trên R

\(y\left(-x\right)=sin^2\left(-x\right)-cos^2\left(-x\right)=sin^2x-cos^2x=y\left(x\right)\)

Hàm chẵn

c/ Hàm xác định trên R

\(y=sin^2x+cos^2x=1\Rightarrow y\left(-x\right)=1=y\left(x\right)\)

Hàm chẵn

d/ ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)

Miền xác định của hàm là miền đối xứng

\(y\left(-x\right)=tan\left(-x\right)+3sin\left(-x\right)-7\)

\(=-tanx-3sinx-7\)

Hàm ko chẵn ko lẻ

23 tháng 8 2018

1) đặc : \(f\left(x\right)=y=cot4x\)

điều kiện xác định : \(sin4x\ne0\Leftrightarrow4x\ne k\pi\Leftrightarrow x\ne\dfrac{k\pi}{4}\)

\(\Rightarrow x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=cot\left(-4x\right)=-cot4x=-f\left(x\right)\)

\(\Rightarrow\) hàm này là hàm lẽ

2) đặc : \(f\left(x\right)=y=\left|cotx\right|\)

điều kiện xác định : \(sinx\ne0\Leftrightarrow x\ne k\pi\)

\(\Rightarrow x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=\left|cot\left(-x\right)\right|=\left|-cotx\right|=\left|cotx\right|=f\left(x\right)\)

\(\Rightarrow\) hàm này là hàm chẳn

3) đặc : \(f\left(x\right)=y=1-sin^2x=cos^2x\)

điều kiện xác định : \(D=R\)

\(\Rightarrow x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=cos^2\left(-x\right)=cos^2x=f\left(x\right)\)

\(\Rightarrow\) hàm này là hàm chẳn

4) đặc : \(f\left(x\right)=y=sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{sinx+cosx}{\sqrt{2}}\)

điều kiện xác định : \(D=R\)

\(\Rightarrow x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=\dfrac{sin\left(-x\right)+cos\left(-x\right)}{\sqrt{2}}=\dfrac{-sinx+cosx}{\sqrt{2}}\ne f\left(x\right);-f\left(x\right)\)

\(\Rightarrow\) hàm này là hàm không chẳn không lẽ

mấy bài còn lại bn làm tương tự cho quen nha

NV
20 tháng 9 2020

1.

Các hàm \(sinx;sin\frac{x}{2};sin\frac{x}{3};...;sin\frac{x}{10}\) có chu kì lần lượt là \(2\pi;4\pi;6\pi;...;20\pi\)

\(\Rightarrow\) Chu kì của hàm đã cho là \(BCNN\left(2\pi;4\pi;...;20\pi\right)=15120\pi\)

2.

a.

\(y=cos^22x+3cos2x+3\)

\(y=\left(cos2x+1\right)\left(cos2x+2\right)+1\ge1\Rightarrow y_{min}=1\) khi \(cos2x=-1\)

\(y=\left(cos2x-1\right)\left(cos2x+4\right)+7\le7\Rightarrow y_{max}=7\) khi \(cos2x=1\)

b.

Đặt \(a=4sinx-3cosx\Rightarrow a^2\le\left(4^2+\left(-3\right)^2\right)\left(sin^2x+cos^2x\right)=25\)

\(\Rightarrow-5\le a\le5\)

\(y=a^2-4a+1\) với \(a\in\left[-5;5\right]\)

\(y=\left(a-2\right)^2-3\ge-3\Rightarrow y_{min}=-3\) khi \(a=2\)

\(y=\left(a-9\right)\left(a+5\right)+46\le46\Rightarrow y_{max}=46\) khi \(a=-5\)

21 tháng 9 2020

Em ko hiểu câu 2a

4 tháng 6 2019

Các bước biến đổi. Bạn tự tìm kết quả nhé!

1) \(\left(\sin x-\cos x\right)\left(\cos^2x+\cos x.\sin x+\sin^2x\right)+\cos^2x-\sin^2x=0\)

<=> \(\left(\sin x-\cos x\right)\left(1+\cos x.\sin x\right)+\left(\cos x-\sin x\right)\left(\cos x+\sin x\right)=0\)

<=> \(\left(\sin x-\cos x\right)\left(\cos x+1\right)\left(\sin x+1\right)=0\)

2) \(\left(\sin^3x-2\sin^5x\right)-\left(2\cos^5x-\cos^3x\right)=0\)

<=> \(\sin^3x\left(1-2\sin^2x\right)-\cos^3x\left(2\cos^2x-1\right)=0\)

<=> \(\sin^3x.\cos2x-\cos^3x.\cos2x=0\)

<=> \(\cos2x\left(\sin^3x-\cos^3x\right)=0\)

3) ĐK: x\(\ne\frac{\pi}{2}+k\pi\)

\(\cos x\left(3.\tan x+2\right)-\left(3\tan x+2\right)=0\)

<=> \(\left(\cos x-1\right)\left(3.\tan x+2\right)=0\)

NV
4 tháng 6 2020

a/ \(y'=4\left(2x-3\right)^3.\left(2x-3\right)'=8\left(2x-3\right)^3\)

b/ \(y'=5cos^43x.\left(cos3x\right)'=-15cos^43x.sin3x\)

c/ \(y'=\frac{\left[cos\left(1-2x^2\right)\right]'}{2\sqrt{cos\left(1-2x^2\right)}}=\frac{-sin\left(1-2x^2\right).\left(1-2x^2\right)'}{2\sqrt{cos\left(1-2x^2\right)}}=\frac{2x.sin\left(1-2x^2\right)}{\sqrt{cos\left(1-2x^2\right)}}\)

d/ \(y'=\frac{\left(\frac{x+1}{x-1}\right)'}{2\sqrt{\frac{x+1}{x-1}}}=\frac{\frac{-2}{\left(x-1\right)^2}}{2\sqrt{\frac{x+1}{x-1}}}=-\frac{1}{\left(x-1\right)^2\sqrt{\frac{x+1}{x-1}}}\)

e/ \(y'=4\left(1+sin^2x\right)^3\left(1+sin^2x\right)'=8.sinx.cosx\left(1+sin^2x\right)^3=4sin2x.\left(1+sin^2x\right)^3\)