K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2022

Câu 3:

<=> \(\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}\left(x-2^2-3\right)^2=0\\y=2\\z=-3\end{cases}}\) <=> \(\hept{\begin{cases}x=7\\y=2\\z=-3\end{cases}}\)

Câu 4 tương tự.

7 tháng 5 2017

\(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)

Vì \(\left(x-y^2+z\right)^2\ge0;\left(y-2\right)^2\ge0;\left(x+3\right)^2\ge0\)nên \(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2\ge0\)

Mà \(\left(x-y^2+z\right)+\left(y-2\right)^2+\left(x+3\right)^2=0\)nên \(\hept{\begin{cases}x-y^2+z=0\\y-2=0\\z+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=7\\y=2\\z=-3\end{cases}}}\)

6 tháng 4 2016

ta có:(x-y2+z)\(\ge\)  0 với mọi x, y, z

(y-2)\(\ge\)  0 với mọi y

(z+3)\(\ge\)  0 với mọi z

=> (x-y2+z)2+(y-2)2+(z+3)\(\ge\) 0 với mọi x, y, z

Mà (x-y2+z)2+(y-2)2+(z+3)2=0

=>(x-y2+z)2 = 0 => x-y2+z=0

=>(y-2)2=0=>y-2=0=>y=2

=>(x+3)2=0=>x+3=0=>x=-3

=>-3-4+z=0=>z=7

20 tháng 2 2018

Mai Ngọc ơi

Hay lắm

Mk k cho bạn rùi

26 tháng 3 2017

ta có : ( x - y2 + z> 0 , mọi x,y,z 

(y-2) 2 >0 , mọi y

( x+3 ) >0 , mọi x

=> x= -5 ; z= -3 ; y=-2

17 tháng 4 2016

Vì (x-y2-z)2  ≥0

    (y-2)2  ≥0 

      (z+3)2   ≥0

Mà   (x-y2-z)2+(y-2)2+(z+3)2 =0

Nên  (x-y2-z)  =0 ; (y-2)2 =0 ; (z+3)2 =0

+Với (y-2)2 =0 

⟹ y-2 =0

     y = 0+2 

     y= 2

+Với (z+3)2 =0

⟹    z+3 = 0

       z = 0-3 

        z= -3

+Với  (x-y2-z)  =0 

⟹    x-y2-z =0

        x-22-(-3) =0

        x-4+3=0

        x-4 = 0-3

         x-4=-3

         x= -3+4

         x= 1

Vậy x= 1; y= 2; z= -3

17 tháng 4 2016

y=2

z=-3

y=\(\sqrt{5}\)

17 tháng 1 2017

\(\hept{\begin{cases}z=-3\\y=2\\x=4+3=7\end{cases}}\)

23 tháng 1 2017

bài 2: (x-3).(y+2) = -5

    Vì x, y \(\in\)Z   => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}

Ta có bảng: 

x-35-5-11
y+21-1-55
x8-224
y-1-3-73



bài 3: a(a+2)<0

TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)

TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
 

           Vậy -2<a<0

23 tháng 1 2017

Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)

TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2

TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại

                         Vậy 1<a<2

11 tháng 4 2016

Từ đề ra => x - y2 + z = 0; y -2 = 0 và z + 3 = 0

Dễ dàng tính được y = 2; z = -3 => x = 7

11 tháng 4 2016

\(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)

\(\Rightarrow\left(x-y^2+z\right)^2=0;\left(y-2\right)^2=0;\left(z+3\right)^2=0\)

\(\Rightarrow x-y^2+z=0;y-2=0;z+3=0\)

\(+y-2=0\Rightarrow y=0+2=2\)

\(+z+3=0\Rightarrow z=0-3=-3\)

\(+x-y^2+z=x-2^2+\left(-3\right)=x-4+\left(-3\right)=0\)

\(\Rightarrow x=0-\left(-3\right)+4=1\)