K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMIN vuông tại I và ΔMIP vuông tại I có

MN=MP

MI chung

=>ΔMIN=ΔMIP

b: Xét ΔMEI vuông tại E và ΔMFI vuông tại F có

MI chung

góc EMI=góc FMI

=>ΔMEI=ΔMFI

=>ME=MF

IN=IP=6/2=3cm

=>MI=4cm

18 tháng 5 2020

a, Xét \(\Delta AMN\)có \(AM=NM\left(gt\right)\Rightarrow\Delta AMN\)cân tại M ( DHNB)

                mà MB là trung tuyến (Vì B là trung điểm của đoạn AN)

\(\Rightarrow MB\)là phân giác (t/c tam giác cân ) \(\Rightarrow\widehat{NMB}=\widehat{AMB}\)

Xét \(\Delta MNB\)và \(\Delta MAB\)có 

\(MN=MA\left(gt\right)\)

\(\widehat{NMB}=\widehat{AMB}\left(cmt\right)\)

MB chung 

\(\Rightarrow\Delta MNB=\Delta MAB\left(c-g-c\right)\)

b, Xét \(\Delta MND\)và \(\Delta MAD\)có 

\(MN=MA\left(gt\right)\)

\(\widehat{NMD}=\widehat{AMD}\left(cmt\right)\)

MD chung 

\(\Rightarrow\Delta MND=\Delta MAD\left(c-g-c\right)\Rightarrow ND=NA\)( 2 cạnh t/ư )

c, Xét \(\Delta MED\)và \(\Delta MPD\)có 

\(ME=MP\)( vì \(MN+NE=MA+AP\) )

\(\widehat{EMD}=\widehat{PMD}\left(cmt\right)\)

MD chung 

\(\Rightarrow\Delta MED=\Delta MPD\left(c-g-c\right)\Rightarrow ED=PD\)(2 cạnh t/ư )

Xét \(\Delta NED\)cà \(\Delta APD\)

\(NE=AP\left(gt\right)\)

\(ND=NA\left(cmt\right)\)

\(ED=PD\left(cmt\right)\)

\(\Rightarrow\Delta NED=\Delta APD\left(c-c-c\right)\Rightarrow\widehat{NDE}=\widehat{ADP}\)(2 góc t/ư )

                                              mà 2 góc này ở vị trì đối đỉnh 

Suy ra A, D, E thẳng hàng (đpcm)

Học tốt

b: \(MH=\sqrt{3^2-1.8^2}=2.4\left(cm\right)\)

\(PH=\sqrt{4^2-2.4^2}=3.2\left(cm\right)\)

c: Xét ΔMNP có \(NP^2=MN^2+MP^2\)

nên ΔMNP vuông tại M

Bài 1: 

a) Ta có: MN2+MP2=152+202=625

               NP2=252=625

=> MN2+MP2=NP2

=> \(\Delta MNP\)vuông tại M ( theo định lý Py-ta-go đảo)

=> đpcm

b) Ta có I là trung điểm MP

=> \(IM=IP=\frac{MP}{2}=\frac{20}{2}=10\left(cm\right)\)

Xét \(\Delta MNI\)vuông tại M có:

MN2+MI2=NI2 ( theo định lý Py-ta-go)

= 152+102=325

=> NI= \(\sqrt{325}\approx18\left(cm\right)\)

Bài 2: 

Xét \(\Delta ABD\)vuông tại D có:

\(AD^2+BD^2=AB^2\)(Theo định lý Py-ta-go)

\(\Rightarrow AD^2+15^2=17^2\)

\(\Rightarrow AD^2=17^2-15^2=64=8^2\)

\(\Rightarrow AD=8\left(cm\right)\)

Lại có: AC=AD+DC

=> 17=8+DC

=> DC=9 cm

Xét \(\Delta BDC\)vuông tại D có:

\(BD^2+DC^2=BC^2\)(Theo định lý Py-ta-go)

\(\Rightarrow BC^2=15^2+9^2=306\)

\(\Rightarrow BC=\sqrt{306}\approx17\left(cm\right)\)

Vậy BC\(\approx\)17 cm

12 tháng 5 2021

undefined