Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2\left(m-1\right)x+m^2-4=0\)
\(\Delta=b^2-4ac=\left[-2\left(m-1\right)\right]^2-4\left(m^2-4\right)\)
\(=4\left(m^2-2m+1\right)-4\left(m^2-4\right)\)
\(=4m^2-8m+4-4m^2+16\)
\(=-8m+20\)
Để pt đã cho có 2 nghiệm pb \(x_1,x_2\) thì \(\Delta>0\Leftrightarrow-8m+20>0\Leftrightarrow-8m>-20\Leftrightarrow m< \dfrac{5}{2}\)
Theo Vi-ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m^2-4\end{matrix}\right.\)
Ta có : \(x_1\left(x_1-3\right)+x_2\left(x_2-3\right)=6\)
\(\Leftrightarrow x_1^2-3x_1+x^2_2-3x_2=6\)
\(\Leftrightarrow\left(x_1^2+x_2^2\right)-3\left(x_1+x_1\right)-6=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3\left(x_1+x_2\right)-6=0\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-4\right)-3\left(2m-2\right)-6=0\)
\(\Leftrightarrow4m^2-8m+4-2m^2+8-6m+6-6=0\)
\(\Leftrightarrow2m^2-14m+12=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=6\left(ktm\right)\\m=1\left(tm\right)\end{matrix}\right.\)
Vậy m = 1 thì thỏa mãn đề bài.
\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-2\right)=9>0;\forall m\)
Phương trình luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-2\end{matrix}\right.\)
\(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=9\)
\(\Leftrightarrow x_1^2+x_2^2-4x_1x_2=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=9\)
\(\Leftrightarrow\left(2m+1\right)^2-6\left(m^2+m-4\right)=9\)
\(\Leftrightarrow2m^2+2m-4=0\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
a) Thay m=0 vào phương trình (1), ta được:
\(x^2-2\cdot\left(0-1\right)x+0^2-3m=0\)
\(\Leftrightarrow x^2+2x=0\)
\(\Leftrightarrow x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy: Khi m=0 thì S={0;-2}
\(\Delta'=\left(m+4\right)^2-\left(m^2+8m+15\right)=1>0\Rightarrow\) pt luôn có 2 nghiệm pb với mọi m
Do \(x_1< x_2\Rightarrow\left\{{}\begin{matrix}x_1=m+4-1=m+3\\x_2=m+4+1=m+5\end{matrix}\right.\)
\(3x_1-2x_2=15\)
\(\Leftrightarrow3\left(m+3\right)-2\left(m+5\right)=15\)
\(\Leftrightarrow m=16\)
\(-x^2+2\left(2+m\right)x-m^2=0\)
Theo Vi - ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(2+m\right)\\x_1x_2=\dfrac{c}{a}=m^2\end{matrix}\right.\)
Ta có :
\(\left|x_1+x_2-4\right|=2x_1x_2\)
\(\Leftrightarrow\left|4+2m-4\right|=2m^2\)
\(\Leftrightarrow\left|2m\right|=2m^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2m=2m^2\\2m=-2m^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2m-2m^2=0\\2m+2m^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2m\left(1-m\right)=0\\2m\left(1+m\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\\m=-1\end{matrix}\right.\)