K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2021

a, ĐKXĐ:\(x-1\ne0\Rightarrow x\ne1\)

b, \(\dfrac{3x^2+3x}{x-1}=0\\ \Rightarrow3x^2+3x=0\\ \Rightarrow3x\left(x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

3 tháng 12 2021

\(1,\\ a,\dfrac{x^2}{x+1}+\dfrac{x}{x+1}=\dfrac{x^2+x}{x+1}=\dfrac{x\left(x+1\right)}{x+1}=x\)

\(b,\left(\dfrac{2xy}{x^2-y^2}+\dfrac{x-y}{2x+2y}\right):\dfrac{x+y}{2x}=\left(\dfrac{4xy}{2\left(x-y\right)\left(x+y\right)}+\dfrac{\left(x-y\right)^2}{2\left(x-y\right)\left(x+y\right)}\right).\dfrac{2x}{x+y}=\dfrac{4xy+x^2-2xy+y^2}{2\left(x-y\right)\left(x+y\right)}.\dfrac{2x}{x+y}=\dfrac{2x\left(x^2+2xy+y^2\right)}{2\left(x-y\right)\left(x+y\right)^2}=\dfrac{2x\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)^2}=\dfrac{x}{x-y}\)

Câu 2: 

a: ĐKXĐ: \(x\ne1\)

2 tháng 6 2016

a) ĐKXĐ:2x2+2x khác 0<=> 2x(x+1) khác 0 <=> 2x khác 0 và x+1 khác 0 <=> x khác 0 và x khác -1.

b) \(\frac{5x+5}{2x^2+2x}\)=1<=>5x+5=2x2+2x<=>2x2-3x-5=0<=>(2x2+2x)-(5x+5)=0<=>2x(x+1)-5(x+1)=0<=>(x+1)(2x-5)=0<=>\(\hept{\begin{cases}x+1=0\\2x-5=0\end{cases}}\)<=>\(\hept{\begin{cases}x=-1\left(l\right)\\x=\frac{5}{2}\left(tm\right)\end{cases}}\)

Vậy phân thức bằng 1 khi x=\(\frac{5}{2}\)

21 tháng 12 2018

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

21 tháng 12 2018

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3

16 tháng 12 2021

\(a,ĐK:x^2-1=\left(x-1\right)\left(x+1\right)\ne0\Leftrightarrow x\ne\pm1\\ \dfrac{3x+3}{x^2-1}=\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x-1}=2\\ \Leftrightarrow x-1=\dfrac{3}{2}\Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\\ b,\dfrac{3}{x-1}\in Z\\ \Leftrightarrow x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-2;0;2;4\right\}\left(tm\right)\)

22 tháng 12 2018

Bài 3 :

a) Phân thức xác định \(\Leftrightarrow x^2-1\ne0\Leftrightarrow\left(x-1\right)\left(x+1\right)\ne0\)

\(\Rightarrow\hept{\begin{cases}x-1\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}}\)

Ta có : 

\(A=\frac{3x+3}{x^2-1}=\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{3}{x-1}\)

Để A có giá trị bằng -2 thì \(\frac{3}{x-1}=-2\)

\(\Leftrightarrow3=-2x+2\)

\(\Leftrightarrow-2x=1\)

\(\Leftrightarrow x=\frac{-1}{2}\)

b) Để A là số nguyên thì :

\(3⋮x-1\)

\(\Rightarrow x-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)

\(\Rightarrow x\in\left\{2;4;0;-2\right\}\)( thỏa mãn ĐKXĐ )

Vậy...........

22 tháng 12 2018

\(a,ĐKXĐ:x\ne\pm1\)

Ta có : \(\frac{3x+3}{x^2-1}=\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{3}{x-1}\)

\(\Rightarrow\frac{3x+3}{x^2-1}=-2\Leftrightarrow\frac{3}{x-1}=-2\)

                                 \(\Leftrightarrow-2\left(x-1\right)=3\)

                                 \(\Leftrightarrow-2x+2=3\)

                                 \(\Leftrightarrow-2x=1\)

                                 \(\Leftrightarrow x=\frac{-1}{2}\)

\(b,\) Để phân thức \(\frac{3x+3}{x^2-1}\) có giá trị nguyên thì \(\frac{3}{x-1}\) có giá trị nguyên

                \(\Rightarrow3⋮x-1\)

                \(\Rightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

                \(\Rightarrow x\in\left\{0;2;-2;4\right\}\)

Vậy \(x=-2;0;2;4\)

17 tháng 12 2016

a) ĐKXĐ: \(^{x^3+2x^2+x+2}\)khác 0

=> x^2(x+2)+(x+2) Khác 0

=> (x^2+1)(x+2) khác 0

=> x^2 khác -1(vô lý) và x khác -2

Vậy x khác -2 thì biểu thức A được xác định

b)\(A=\frac{3x^3+6x^2}{x^3+2x^2+x+2}=\frac{3x^2\left(x+2\right)}{x^2\left(x+2\right)+\left(x+2\right)}\)

\(=\frac{3x^2\left(x+2\right)}{\left(x^2+1\right)\left(x+2\right)}=\frac{3x^2}{x^2+1}\)

Để A=2 thì \(\frac{3x^2}{x+2}=2\)=>\(3x^2=2\left(x^2+1\right)=>3x^2=2x^2+2\)

\(=>x^2=2=>x=\sqrt{2}\)(Thỏa mãn điều kiện xác định)

17 tháng 12 2016

mơm nhìu nhaKagamine Len love Vocaloid02

a: ĐKXĐ: \(x\notin\left\{-1;-2\right\}\)

b: \(M=\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\dfrac{x-1}{x+2}\)

Thay x=2002 vào M, ta được:

\(M=\dfrac{2002-1}{2002+1}=\dfrac{2001}{2003}\)

c: Để M=0 thì x-1=0

hay x=1(nhận)

21 tháng 12 2019

a) Giá trị của phân thức được xác định 

\(\Leftrightarrow x^2-1\ne0\)

\(\Leftrightarrow x\ne\pm1\)

Vậy để giá trị của phân thức đã cho xác định \(\Leftrightarrow x\ne\pm1\)

b)Ta có: 

 \(\frac{3x+3}{x^2-1}=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{3}{x-1}\)

c) Để phân thức nhận giá trị nguyên dương

\(\Leftrightarrow\frac{3}{x-1}\)có giá trị nguyên dương 

\(\Leftrightarrow x-1\)\(\inƯ\left(3\right)=\left\{1;3\right\}\)

x-113
x2 ( Nhận )4 ( Nhận )

Vậy với \(x\in\left\{2;4\right\}\)thì giá trị của phân thức có giá trị nguyên dương.

18 tháng 2 2021

phân thức được xác định ⇔ x2 - 1 ≠ 0 ⇔ x ≠ \(\left\{-1;1\right\}\)

\(\dfrac{3x+3}{x^2-1}=-2\) 

=> 3x + 3 = -2x2 + 2

=> 2x2 + 3x + 1 = 0

=> (2x+1)(x+1) = 0

=> x = -1/2 (thỏa mãn) hoặc x = -1 (loại)

Vậy, để phân thức có giá trị bằng  –2 thì x = -1/2.

 

 

 

18 tháng 2 2021

\(\dfrac{3x+3}{x^2-1}\)=\(\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)  (x khác -1 và x khác 1)

\(\dfrac{3}{x-1}\)

=> Phân thức ban đầu có giá trị nguyên ⇔ 3 chia hết cho x-1

=> x-1 ∈\(\left\{-3;-1;1;3\right\}\)

=> x ∈\(\left\{-2;0;2;4\right\}\)

Vậy, để phân thức có giá trị là số nguyên.thì x ∈\(\left\{-2;0;2;4\right\}\).