Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4:
Quãng đường đi từ HCM đến Hoàng Sa là:
$360.1,852=666,72$ (km)
Thời gian tàu đi quãng đường trên là:
$\frac{666,72}{40}=16,668\approx 17$ (h)
Đáp án C
Câu 5:
$n=\overline{abc2}=\overline{abc0}+2=\overline{abc}.10+2=10x+2$
Đáp án C
Câu 3:
Điều kiện để PT đã cho là PT bậc nhất 1 ẩn là:
\(\left\{\begin{matrix}
m^2-4=0\\
m-2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
(m-2)(m+2)=0\\
m-2\neq 0\end{matrix}\right.\Leftrightarrow m=-2\)
Đáp án A
\(\left(2m^2+3\right)x-1\ge5x+m\)
\(\Leftrightarrow\left(2m^2-2\right)x\ge m+1\)
Để tập nghiệm của BPT là R
\(\Leftrightarrow\left\{{}\begin{matrix}2m^2-2=0\\m+1\le0\end{matrix}\right.\) \(\Rightarrow m=-1\)
\(\Leftrightarrow2m.2^x+\left(2m+1\right)\left(3-\sqrt{5}\right)^x+\left(3+\sqrt{5}\right)^x=0\)
\(\Leftrightarrow\left(\frac{3+\sqrt{5}}{2}\right)^x+\left(2m+1\right)\left(\frac{3-\sqrt{5}}{2}\right)^x+2m< 0\)
Đặt \(t=\left(\frac{3+\sqrt{5}}{2}\right)^x,0< t\le1\Rightarrow\frac{1}{t}=\left(\frac{3-\sqrt{5}}{2}\right)^x\)
Phương trình trở thành :
\(t+\left(2m+1\right)\frac{1}{t}+2m=0\) (*)
a. Khi \(m=-\frac{1}{2}\) ta có \(t=1\) suy ra \(\left(\frac{3+\sqrt{5}}{2}\right)^x=1\Leftrightarrow x=0\)
Vậy phương trình có nghiệm là \(x=0\)
b. Phương trình (*) \(\Leftrightarrow t^2+1=-2m\left(t+1\right)\Leftrightarrow\frac{t^2+1}{t+1}=-2m\)
Xét hàm số \(f\left(t\right)=\frac{t^2+1}{t+1};t\in\)(0;1]
Ta có : \(f'\left(t\right)=\frac{t^2+2t+1}{\left(t+1\right)^2}\Rightarrow f'\left(t\right)=0\Leftrightarrow=-1+\sqrt{2}\)
t f'(t) f(t) 0 1 0 - + 1 1 -1 + căn 2 2 căn 2 - 2
Suy ra phương trình đã cho có nghiệm đúng
\(\Leftrightarrow2\sqrt{2}-2\le-2m\le1\Leftrightarrow\sqrt{2}-1\ge m\ge-\frac{1}{2}\)
Vậy \(m\in\left[-\frac{1}{2};\sqrt{2}-1\right]\) là giá trị cần tìm
a/ \(mx^2-4x-3m+6=0\)
Để pt có nghiệm duy nhất
\(\Rightarrow\left[{}\begin{matrix}m=0\\\Delta'=4-m\left(-3m+6\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\3m^2-6m+4=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow m=0\)
b/ \(\left[{}\begin{matrix}m=0\\\Delta'=\left(m+1\right)^2-m\left(m+1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=0\\m=-1\end{matrix}\right.\)
c/ \(2x^2-2=mx^2+x\Leftrightarrow\left(m-2\right)x^2+x+2=0\)
Để pt có nghiệm duy nhất
\(\Rightarrow\left[{}\begin{matrix}m-2=0\\\Delta=1-8\left(m-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=\frac{17}{8}\end{matrix}\right.\)
Câu 1: D
Bạn ơi câu 2 đâu