Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{x+1}{11}+\frac{x+2}{10}=\frac{x+3}{9}+\frac{x+4}{8}\)
\(\Rightarrow1+\frac{x+1}{11}+1+\frac{x+2}{10}=1+\frac{x+3}{9}+1+\frac{x+4}{8}\)
\(\Rightarrow\frac{x+12}{11}+\frac{x+12}{10}=\frac{x+12}{9}+\frac{x+12}{8}\)
\(\Rightarrow\frac{x+12}{11}+\frac{x+12}{10}-\frac{x+12}{9}-\frac{x+12}{8}=0\)
\(\Rightarrow\left(x+12\right)\left(\frac{1}{11}+\frac{1}{10}-\frac{1}{9}-\frac{1}{8}\right)=0\)
Mà \(\left(\frac{1}{11}+\frac{1}{10}-\frac{1}{9}-\frac{1}{8}\right)>0\)
\(\Rightarrow x+12=0\Rightarrow x=-12\)
\(\frac{x+1}{11}+\frac{x+2}{10}=\frac{x+3}{9}+\frac{x+4}{8}\)
<=> \(\frac{x+1}{11}+\frac{x+2}{10}-\frac{x+3}{9}-\frac{x+4}{8}=0\)
<=> \(\left(\frac{x+1}{11}+1\right)+\left(\frac{x+2}{10}+1\right)-\left(\frac{x+3}{9}+1\right)-\left(\frac{x+4}{8}+1\right)=0\)<=> \(\frac{x+12}{11}+\frac{x+12}{10}-\frac{x+12}{9}-\frac{x+12}{8}=0\)
<=> \(\left(x+12\right)\left(\frac{1}{11}+\frac{1}{10}-\frac{1}{9}-\frac{1}{8}\right)=0\)
<=> x + 12 = 0.Vì \(\frac{1}{11}+\frac{1}{10}-\frac{1}{9}-\frac{1}{8}\ne0\)
<=> x = -12
Ta có:\(\frac{x+y}{2}=\frac{y-5}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:\(\frac{x+y}{2}=\frac{y-5}{3}=\frac{x+y+y-5}{2+3}=\frac{x+2y-5}{5}\)
\(\Rightarrow\frac{x+2y-5}{5}=\frac{x+2y-5}{y-1}\)\(\Rightarrow y-1=5\Rightarrow y=6\)
\(\Rightarrow\frac{x+6}{2}=\frac{6-5}{3}\)\(\Rightarrow\frac{x+6}{2}=\frac{1}{3}\)
\(\Rightarrow3\cdot\left(x+6\right)=2\)
\(\Rightarrow3x+18=2\)
\(\Rightarrow3x=-16\Rightarrow x=\frac{-16}{3}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x+y}{2}=\frac{y-5}{3}=\frac{x+y+y-5}{2+3}=\frac{x+2y-5}{5}\)
\(=\frac{x+2y-5}{y-1}\) (theo đề bài)
=> y - 1 = 5
=> y = 5 + 1 = 6
Thay y = 6 vào đề bài ta có: \(\frac{x+6}{2}=\frac{7-6}{3}=\frac{1}{3}\)
\(\Rightarrow x=\frac{1}{3}.2-6=\frac{-16}{3}\)
Vậy \(x=\frac{-16}{3};y=6\)
Trên tia đối của AM, lấy điểm D sao cho M là trung điểm của AD.
Xét tam giác ABM và tam giác DCM có:
AM = DM (M là trung điểm của AD)
AMB = DMC (2 góc đối đỉnh)
MB = MC (M là trung điểm của BC)
=> Tam giác ABM = Tam giác DCM (c.g.c)
=> ABM = DCM (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB // CD
mà AB _I_ AC
=> AC _I_ CD
Xét tam giác ABC và tam giác CDA có:
BA = DC (tam giác ABM = tam giác DCM)
BAC = DCA ( = 900)
AC là cạnh chung
=> Tam giác ABC = Tam giác CDA (c.g.c)
=> BC = AD (2 cạnh tương ứng)
mà AM = AD/2 (M là trung điểm của AD)
=> AM = BC/2
mà BM = MC = BC/2 (M là trung điểm của BC)
=> MA = MB = MC
SIÊU THỊ ĐÀO TẠO
Một người đàn ông trẻ tuổi được thuê bởi một siêu thị báo cáo cho ngày đầu tiên của mình từ. Người quản lý chào đón anh ta với một cái bắt tay ấm áp và một nụ cười, đưa cho anh một cái chổi và nói: "Công việc đầu tiên của bạn sẽ được quét ra khỏi cửa hàng. "Nhưng tôi là một người tốt nghiệp đại học," người đàn ông trẻ trả lời phẫn nộ. "Ồ, tôi xin lỗi. Tôi đã không biết rằng 'nói người quản lý." Ở đây, xin cho con cây chổi- tôi sẽ chỉ cho bạn cách. '
a/
Ta có : \(3^{420}=\left(3^4\right)^{105}=81^{105}\) ; \(4^{315}=\left(4^3\right)^{105}=64^{105}\)
Vì 81 > 64 nên ..................................
b/Ta có : \(\begin{cases}\left(x^2-4\right)^2\ge0\\\left(3y-2\right)^2\ge0\end{cases}\) \(\Rightarrow\left(x^2-4\right)^2+\left(3y-2\right)^2\ge0\)
Do đó dấu "=" xảy ra chỉ khi \(\begin{cases}\left(x^2-4\right)^2=0\\\left(3y-2\right)^2=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=\pm2\\y=\frac{2}{3}\end{cases}\)
Taco: (x - 2)^2>0 hoac = 0
suy ra : (x - 2 )^2 + 19 > hoac = 0
dau bang xay ra khi:
x - 2 = 0
x = 2 thi y =19
Bài 2 : ta có:-I2x -5I < 0
dấu bằng xảy ra khi :
23 - I2x - 5I<hoặc = 0
suy ra : 2x -5 = 0
x = 5/2
Bài 1:
\(\left(2x+1\right)^3=9\left(2x+1\right)\)
\(\Leftrightarrow\left(2x+1\right)^3-9\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left[\left(2x+1\right)^2-9\right]=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x+1-3\right)\left(2x+1+3\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-2\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+1=0\\2x-2=0\\2x+4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=1\\x=-2\end{array}\right.\)
Bài 2:
\(A=\left(2x-1\right)^2+\left(3-y\right)^2+2017\)
Vì: \(\left(2x-1\right)^2+\left(3-y\right)^2\ge0\)
=> \(\left(2x-1\right)^2+\left(3-y\right)^2+2017\ge2017\)
Dấu "=" xảy ra khi \(x=\frac{1}{2};y=3\)
Vậy GTNN của A là 2017 khi \(x=\frac{1}{2};y=3\)
Bài 1:
(2x + 1)3 = 9.(2x + 1)
=> (2x + 1)3 - 9.(2x + 1) = 0
=> (2x + 1).[(2x + 1)2 - 9] = 0
=> (2x + 1).(2x + 1 - 3).(2x + 1 + 3) = 0
=> (2x + 1).(2x - 2).(2x + 4) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}2x+1=0\\2x-2=0\\2x+4=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}2x=-1\\2x=2\\2x=-4\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{-1}{2}\\x=1\\x=-2\end{array}\right.\)
Vậy \(x\in\left\{\frac{-1}{2};1;-2\right\}\)
Bài 2:
Có: \(\left(2x-1\right)^2\ge0;\left(3-y\right)^2\ge0\forall x;y\)
=> \(A=\left(2x-1\right)^2+\left(3-y\right)^2+2017\ge2017\)
Dấu "=" xảy ra khi và chỉ khi \(\begin{cases}\left(2x-1\right)^2=0\\\left(3-y\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}2x-1=0\\3-y=0\end{cases}\)\(\Rightarrow\begin{cases}2x=1\\y=3\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=3\end{cases}\)
Vậy GTNN của A là 2017 khi và chỉ khi \(x=\frac{1}{2};y=3\)