K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 12 2021

\(P=\dfrac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\dfrac{1}{x^2+2x+3}=3+\dfrac{1}{\left(x+1\right)^2+2}\le3+\dfrac{1}{2}=\dfrac{7}{2}\)

\(P_{max}=\dfrac{7}{2}\) khi \(x=-1\)

\(M=\dfrac{2\left(x^2+3x+3\right)+1}{x^2+3x+3}=2+\dfrac{1}{x^2+3x+3}=2+\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}}\le2+\dfrac{1}{\dfrac{3}{4}}=\dfrac{10}{3}\)

\(M_{max}=\dfrac{10}{3}\) khi \(x=-\dfrac{3}{2}\)

2 tháng 7 2018

a,\(M=-2x^2+2x-3\)

\(\Rightarrow2M=-4x^2+4x-6=-\left(4x^2-4x+1\right)-5=-\left(2x-1\right)^2-5\)

\(-\left(2x-1\right)^2\le0\Rightarrow2M=-\left(2x-1\right)^2-5\le-5\Rightarrow M\le-\frac{5}{2}\)

Dấu "=" xảy ra khi x=1/2

Vậy Mmax=-5/2 khi x=1/2

b, \(N=3x-x^2-4=-x^2+3x-4=-\left(x^2-3x+\frac{9}{4}\right)-\frac{7}{4}=-\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\)

Vì \(-\left(x-\frac{3}{2}\right)^2\le0\Rightarrow N=-\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\le-\frac{7}{4}\)

Dấu "=" xảy ra khi x=3/2

Vậy Nmax=-7/4 khi x=3/2

c, \(P=\frac{3}{x^2-6x+10}=\frac{3}{x^2-6x+9+1}=\frac{3}{\left(x-3\right)^2+1}\)

Vì \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1\Rightarrow\frac{1}{\left(x-3\right)^2+1}\le1\Rightarrow\frac{3}{\left(x-3\right)^2+1}\le3\)

Dấu "=" xảy ra khi x=3

Vậy Pmax=3 khi x=3

28 tháng 12 2017

\(P_1=\frac{3x^2+6x+10}{x^2+2x+3}\)

      \(=3+\frac{1}{x^2+2x+3}\)

Lại có: \(x^2+2x+3\)

          \(=\left(x+1\right)^2+2\ge2\)

\(\Rightarrow P_1\le3+\frac{1}{2}=\frac{7}{2}\)

Dấu = xảy ra khi x=-1

P2 tương tự

17 tháng 10 2018

Ta có: \(A=\frac{3x^2+6x+11}{x^2+2x+3}=3+\frac{2}{x^2+2x+3}=3+\frac{2}{\left(x+1\right)^2+2}\)

Đặt \(B=\frac{2}{\left(x+1\right)^2+2}\),để A đạt giá trị lớn nhất thì B lớn nhất.

Mà B lớn nhất khi \(\left(x+1\right)^2+2\) bé nhất. 

Lại có: \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+2\ge2\) (1)

Từ (1) suy ra: \(B\le\frac{2}{2}=1\Rightarrow A=3+B\le3+1=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy \(A_{max}=4\Leftrightarrow x=-1\)

6 tháng 6 2018

\(P=\dfrac{3x^2+6x+11}{x^2+2x+3}\)

\(P=\dfrac{4x^2+8x+12-x^2-2x-1}{x^2+2x+3}\)

\(P=\dfrac{4\left(x^2+2x+3\right)}{x^2+2x+3}-\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2+2}\)

\(P=4-\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2+2}\)

Do : \(-\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2+2}\) ≤ 0 ∀x

\(4-\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2+2}\) ≤ 4

⇒ PMax = 4 ⇔ x = - 1

 

6 tháng 6 2018

\(P=\dfrac{3x^2+6x+11}{x^2+2x+3}=\dfrac{3x^2+6x+9+2}{x^2+2x+3}=\dfrac{3\left(x^2+2x+3\right)+2}{x^2+2x+3}=3+\dfrac{2}{x^2+2x+3}=3+\dfrac{2}{\left(x+1\right)^2+2}\le3+1=4\)

29 tháng 5 2017

Ta có :

\(\frac{3x^2-6x+17}{x^2-2x+5}=3+\frac{2}{x^2-2x+5}\)

Biểu thức đạt giá trị lớn nhất 

<=> x2 - 2x + 5 nhỏ nhất 

Ta lại có :

x2 - 2x + 5 = x2 - 2x + 1 + 4 = (x - 1)2 + 4 

Vì \(\left(x-1\right)^2\ge0\)

=> \(\left(x-1\right)^2+4\ge4\)

=> \(Min=4\)

Vậy giá trị lớn nhất của biểu thức là :

\(3+\frac{2}{4}=3+\frac{1}{2}=\frac{7}{2}\)

29 tháng 5 2017

\(\frac{3x^2-6x+17}{x^2-2x+5}=\frac{3\left(x^2-2x+5\right)+2}{x^2-2x+5}=3+\frac{2}{x^2-2x+5}=3+\frac{2}{\left(x-1\right)^2+4}\) (1)

Vì \(\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow\frac{2}{\left(x-1\right)^2+4}\le\frac{2}{4}=\frac{1}{2}\forall x\)

\(\Rightarrow3+\frac{2}{\left(x-1\right)^2+4}\le3+\frac{1}{2}=\frac{7}{2}\forall x\)

Dấu "=" xảy ra <=> \(x=1\)

Vậy ..........

4 tháng 1 2019

\(M=-2x^2+2x-3\\ \Leftrightarrow2M=-4x^2+4x-6\\ \Leftrightarrow2M=-\left(4x^2-4x+4\right)-2\\ \Leftrightarrow2M=-\left(2x-2\right)^2-2\\ \Leftrightarrow M=\dfrac{-\left(2x-2\right)^2-2}{2}\)

Ta có :

\(-\left(2x-2\right)^2\le0\\ \Rightarrow-\left(2x-2\right)^2-2\le-2\\ \Rightarrow\dfrac{-\left(2x-2\right)^2-2}{2}\le\dfrac{-2}{2}\\ \Rightarrow M\le-1\)

\(\Rightarrow Max\left(M\right)=-1\Leftrightarrow2x-2=0\Rightarrow x=1\)

.......

\(N=3x-x^2-4\\ \Leftrightarrow N=-\left(x^2-3x+4\right)\\ \Leftrightarrow N=-\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{9}{4}+\dfrac{16}{4}\right)\\ \Rightarrow N=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{7}{4}\)

Ta có :

\(-\left(x-\dfrac{3}{2}\right)^2\le0\\ \Rightarrow-\left(x-\dfrac{3}{2}\right)^2+\dfrac{7}{4}\le0+\dfrac{7}{4}\\ \Rightarrow N\le\dfrac{7}{4}\\ \Rightarrow Max\left(M\right)=\dfrac{7}{4}\Leftrightarrow x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)

4 tháng 1 2019

\(P=\dfrac{3}{x^2-6x+10}=\dfrac{3}{\left(x-3\right)^2+1}\)

Ta có :

\(\left(x-3\right)^2\ge0\\ \Rightarrow\left(x-3\right)^2+1\ge1\\ \Rightarrow\dfrac{3}{\left(x-3\right)^2+1}\ge\dfrac{3}{1}\Rightarrow P\ge3\\ \Rightarrow Min\left(P\right)=3\Leftrightarrow x-3=0\Rightarrow x=3\)

10 tháng 12 2017

Ta có :

\(2B=\frac{6x^2+12x+20}{x^2+2x+3}=\frac{7x^2+14x+21-x^2-2x-1}{x^2+2x+3}=\frac{7\left(x^2+2x+3\right)-\left(x+1\right)^2}{x^2+2x+3}\)

\(=7-\frac{\left(x+1\right)^2}{x^2+2x+3}\le7\) (Vì \(\frac{\left(x+1\right)^2}{x^2+2x+3}\ge0\))

Do \(2B\le7\Rightarrow B\le\frac{7}{2}\)đạt GTLN là \(\frac{7}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{\left(x+1\right)^2}{x^2+2x+3}=0\Rightarrow x=-1\)

Vậy GTLN của \(B\) là \(\frac{7}{2}\) tại \(x=-1\)

a: \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\le\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)

\(\Leftrightarrow2x-3+5x\left(x-2\right)\le5x^2-7\left(2x-3\right)\)

\(\Leftrightarrow2x-3+5x^2-10x< =5x^2-14x+21\)

=>-8x-3<=-14x+21

=>6x<=24

hay x<=4

b: \(\dfrac{6x+1}{18}+\dfrac{x+3}{12}>=\dfrac{5x+3}{6}+\dfrac{12-5x}{9}\)

=>2(6x+1)+3(x+3)>=6(5x+3)+4(12-5x)

=>12x+2+3x+9>=30x+18+48-20x

=>15x+11>=10x+66

=>5x>=55

hay x>=11