\(A=\dfrac{7.9+14.27+21.36}{21.27+42.81+63.108}\)

2,Cho ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2016

Câu 1 dễ thôi. Bạn tính tử, rồi tính mẫu sao cho khi phân phối ở cả tử và mẫu đều có phần thừa số có thể rút gọn cho nhau. Giờ mik bận quá nên ko thể giải dầy đủ. Thông cảm nha...

Câu 2: Cũng ko khó lắm đâu:

S=\(\frac{1}{1}\) - \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{7}\)+...+\(\frac{1}{n}\)-\(\frac{1}{n+3}\)

=1-\(\frac{1}{n+3}\)<1.

Vậy: S<1

Để làm dc bài sau, bạn nhớ giùm mik công thức: \(\frac{a}{b.\left(b+a\right)}\)=\(\frac{1}{b}\)-\(\frac{1}{b+a}\)

Câu 3:  Đặt \(A=\frac{2003.2004-1}{2003.2004}\), \(B=\frac{2004.2005-1}{2004.2005}\)ta có:

\(A=\frac{2003.2004}{2003.2004}\)-\(\frac{1}{2003.2004}\)=1-\(\frac{1}{2003.2004}\)

\(B=\frac{2004.2005}{2004.2005}\)-\(\frac{1}{2004.2005}\)=1-\(\frac{1}{2004.2005}\)

Vì 2003.2004<2004.2005=>\(\frac{1}{2003.2004}\)>\(\frac{1}{2004.2005}\)

=>1-\(\frac{1}{2003.2004}\)<1-\(\frac{1}{2004.2005}\)

Vậy:  \(\frac{2003.2004-1}{2003.2004}\)< \(\frac{2004.2005-1}{2004.2005}\)

Nhớ cho mik nha. Thanks

5 tháng 4 2017

1, mình không ghi đề nha

A= \(\frac{1.1+1.1+1.1}{3+3.3+3.3+3}\)

A=\(\frac{1.3}{9.3}\)

A=\(\frac{1}{9}\)

5 tháng 4 2017

Cảm ơn bạn!

23 tháng 6 2018

a, Ta có :

\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{1\cdot2\cdot3\cdot4}+...+\dfrac{1}{1\cdot2\cdot3\cdot...\cdot100}\\ < \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}< 1\\ \Rightarrow M< 1\\ \RightarrowĐpcm\)

Câu 1: 

a: AC=5-3=2(cm)

b: Trên tia CD, ta có: CA<CD

nên điểm A nằm giữa hai điểm C và D

mà CA=1/2CD

nên A là trung điểm của CD

Cách tiểu học :

a) \(3\frac{9}{10}>2\frac{9}{10}\) ( Vì phần nguyên 3 > 2, phần phân số bằng nhau )

b) \(5\frac{1}{10}=\frac{51}{10}\), \(2\frac{9}{10}=\frac{29}{10}\)\(\frac{51}{10}>\frac{29}{10}\)

nên : \(5\frac{1}{10}>2\frac{9}{10}\)

c) \(3\frac{4}{10}=3\frac{2}{5}\) ( vì phần nguyên \(3=3\) và phần phân số \(\frac{4}{10}=\frac{2}{5}\) )

d) \(3\frac{4}{10}=3\frac{2}{5}\) ( vì phần nguyên \(3=3\) và phần phân số \(\frac{4}{10}=\frac{2}{5}\) )

4 tháng 8 2019

Nguyễn Ngọc Thiện làm cách THCS nha

29 tháng 3 2018

. Ta có :

\(\dfrac{1}{11}>\dfrac{1}{20}\)

\(\dfrac{1}{12}>\dfrac{1}{20}\)

.................

\(\dfrac{1}{19}>\dfrac{1}{20}\)

\(\dfrac{1}{20}=\dfrac{1}{20}\)

\(\Leftrightarrow\dfrac{1}{11}+\dfrac{1}{12}+......+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+.....+\dfrac{1}{20}\)

\(\Leftrightarrow S>\dfrac{1}{20}.10\)

\(\Leftrightarrow S>\dfrac{1}{2}\)

2. \(\dfrac{x}{12}=\dfrac{-1}{24}-\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{x}{12}=-\dfrac{1}{6}\)

\(\Leftrightarrow6x=-12\)

\(\Leftrightarrow x=-2\)

Vậy ...

3. \(\dfrac{2}{5.7}+\dfrac{2}{7.9}+........+\dfrac{2}{19.21}\)

\(=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+......+\dfrac{1}{19}-\dfrac{1}{21}\)

\(=\dfrac{1}{5}-\dfrac{1}{21}\)

\(=\dfrac{16}{105}\)

29 tháng 3 2018

Mơn bn dthw nhìu nek ><

2.A=\(\dfrac{43.11}{2011^{2013}}\)+\(\dfrac{79}{2011^{2013}}\)=\(\dfrac{43.11+79}{2011^{2013}}\)

B=\(\dfrac{79.11}{2011^{2013}}\)+\(\dfrac{43}{2011^{2013}}\)=\(\dfrac{79.11+43}{2011^{2013}}\)

Ta có: 43.11+79=43.(10+1)+79=43.10+43+79=430+122

79.11+43=79.(10+1)+43=79.10+79+43=790+122

Vì 430+122<790+122 nên 43.11+79<79.11+43 (1)

Mà 20112013<20112013 (2)

Từ (1) và (2) suy ra A<B

3. A=\(\dfrac{2010.2012}{2011.2011}\)

Vì B<1 nên B>\(\dfrac{2010}{2012}\)=\(\dfrac{2010.2012}{2012.2012}\)

Vì 2010.2012=2010.2012; 2011.2011<2012.2012 nên B>A

4. A=\(\dfrac{3n}{3\left(2n+1\right)}\)=\(\dfrac{3n}{6n+3}\)

Vì 6n+3=6n+3; 3n<3n+1 nên A<B