Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3x - 2 = 2x-3
<=> 3x-2 -2x +3 = 0
<=> x +1 = 0
<=> x = -1
c) 3 - 4y+24+6y=y+27+3y
<=> 3 - 4y+24+6y - y - 27 - 3y = 0
<=> -2y =0
<=> y = 0
b,7-2x = 22 - 3x
<=> 7-2x -22 +3x = 0
<=> -15 +x = 0
<=> x = 15
d) x-12+4x = 25+2x-1
<=> x-12+4x -25-2x+1=0
<=> 3x -36 = 0
<=> 3x = 36
<=> x = 12
còn câu e bạn tự làm nha
\(a,3x-2=2x-3\)
\(3x-2x=-3+2\)
\(x=-1\)
Vậy pt cs nghiệm là { -1 }
\(b,7-2x=22-3x\)
\(-2x+3x=22-7\)
\(x=15\)
Vậy pt cs nghiệm là { 15 }
bn lm nốt nha ...
a) (5x - 1)(2x + 1) = (5x -1)(x + 3)
<=> (5x - 1)(2x + 1) - (5x -1)(x + 3) = 0
<=> (5x - 1)(2x + 1 - x - 3) = 0
<=> (5x - 1)(x - 2) = 0
<=> \(\orbr{\begin{cases}5x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0,2\\x=2\end{cases}}\)
Vậy x = 0,2 ; x = 2 là nghiệm phương trình
b) x3 - 5x2 - 3x + 15 = 0
<=> x2(x - 5) - 3(x - 5) = 0
<=> (x2 - 3)(x - 5) = 0
<=> \(\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-5\right)=0\)
<=> \(x-\sqrt{3}=0\text{ hoặc }x+\sqrt{3}=0\text{ hoặc }x-5=0\)
<=> \(x=\sqrt{3}\text{hoặc }x=-\sqrt{3}\text{hoặc }x=5\)
Vậy \(x\in\left\{\sqrt{3};\sqrt{-3};5\right\}\)là giá trị cần tìm
c) (x - 3)2 - (5 - 2x)2 = 0
<=> (x - 3 + 5 - 2x)(x - 3 - 5 + 2x) = 0
<=> (-x + 2)(3x - 8) = 0
<=> \(\orbr{\begin{cases}-x+2=0\\3x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)
Vậy tập nghiệm phương trình \(S=\left\{2;\frac{8}{3}\right\}\)
d) x3 + 4x2 + 4x = 0
<=> x(x2 + 4x + 4) = 0
<=> x(x + 2)2 = 0
<=> \(\orbr{\begin{cases}x=0\\\left(x+2\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy tập nghiệm phương trình S = \(\left\{0;-2\right\}\)
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
a, ( 8x + 5 )( 4x + 3 )( 2x + 1 ) = 9
<=> ( 8x + 5 )[ 2( 4x+3)] [ 4 ( 2x+1 )] = 9* 2 * 4
<=> (8x+5)(8x+6)(8x+4) = 72
Đặt 8x+5 = y ta có phương trình tương đương :
y ( y -1 ) ( y+1) = 72
......................
b, Tương tự phần a nhé
c, x^3 + 5x^2 + 5x + 2=0
<=> x^3 + 1 + 5x^2 + 5x + 1 = 0
<=> (x+1)(x^2 - x +1) + 5x ( x+1 ) + 1 =0
<=> (x+1 ) ( x^2+4x + 1) + 1 = 0
Bạn đưa quá nhiều bài 1 lúc nên người ta giải được cũng chẳng ai muốn giải đâu, vì nhìn vào đã thấy ngộp rồi. Kinh nghiệm là muốn được giải quyết nhanh thì chỉ đăng 2-3 bài 1 lúc thôi
Bài 1:
a/ \(11-\left(2x+3\right)=3\left(x-4\right)\)
\(\Leftrightarrow11-2x-3=3x-12\)
\(\Leftrightarrow5x=20\)
\(\Rightarrow x=4\)
b/ \(5\left(2x-3\right)-4\left(5x-7\right)=19-2x\)
\(\Leftrightarrow10x-15-20x+28=19-2x\)
\(\Leftrightarrow8x=-6\)
\(\Rightarrow x=-\frac{3}{4}\)
c/
\(\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)
\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)
\(\Leftrightarrow x=3\)
d/
\(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)
\(\Leftrightarrow5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)
\(\Leftrightarrow79x=158\)
\(\Rightarrow x=2\)
e/
\(\frac{2-6x}{5}-\frac{2+3x}{10}=7-\frac{6x+3}{4}\)
\(\Leftrightarrow4\left(2-6x\right)-2\left(2+3x\right)=140-5\left(6x+3\right)\)
\(\Leftrightarrow0=-121\) (vô lý)
Vậy pt vô nghiệm
f/
\(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)
\(\Leftrightarrow3\left(3x+2\right)-\left(3x+1\right)=12x+10\)
\(\Leftrightarrow6x=-5\)
\(\Rightarrow x=-\frac{5}{6}\)
a, Ta có : \(8x-2=4x-10\)
=> \(8x-4x=-10+2=-8\)
=> \(4x=-8\)
=> \(x=-2\)
Vậy phương trình trên có tập nghiệm là \(S=\left\{-2\right\}\)
b, Ta có : \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)
=> \(\left(x-1\right)\left(x^2+x+1\right)=\left(x-1\right)\left(x^2+x+1\right)\)
Vậy phương trình trên có vô số nghiệm .
Câu 1:
-Bước 1: Chuyển vế ax=-b
-Bước 2: Chia hai vế cho a ta được \(x=\frac{-b}{a}\)
-Bước 3: Kết luận nghiệm \(S=\left\{\frac{-b}{a}\right\}\)
Câu 2:
a) Ta có: 8x-2=4x-10
\(\Leftrightarrow\)8x-2-4x+10=0
hay 4x+8=0
\(\Leftrightarrow\)4x=-8
hay x=-2
Vậy: x=-2
b) Ta có: \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow x^3-1-\left(x^3-1\right)=0\)
hay \(x^3-1-x^3+1=0\)
\(\Leftrightarrow0=0\)
Vậy: x∈R