K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:Cho \(\Delta ABC\)có \(\widehat{A}\)=\(40^o\);\(\widehat{B}\)=\(80^o\)và \(\Delta DEF\)có \(\widehat{A'}\)=\(40^o\);\(\widehat{D}=60^o\).Khẳng định nào sau đây đúng?

A.\(\Delta ABC\)đồng dạng \(\Delta DEF\)                                             B.\(\Delta FED\)đồng dạng \(\Delta CBA\)

C.\(\Delta ACB\)đồng dạng \(\Delta EFD\)                                             D. \(\Delta DFE\)đồng dạng \(\Delta CBA\)

Câu 2:\(\Delta A'B'C'\)đồng dạng \(\Delta ABC\)theo tỉ số đồng dạng k=\(\frac{3}{2}\). Gọi AM, A'M' lần lượt là các đường trung tuyến của \(\Delta ABC\)và \(\Delta A'B'C'\). Biết A'M'=15cm, độ dài AM là:

A.6cm                       B.10cm                            C.12cm                                  D.22,5cm

Câu 3:Chọn phát biểu đúng trong các phát biểu sau:

A.Hai tam giác cân thì đông dạng với nhau

B.Hai tam giác đồng dạng thì bằng nhau

C.Hai tam giác vuông cân thì đông dạng với nhau

D.Hai tam giác vuông bất kì thì luôn đồng dạng

Câu 4:\(\Delta ABC\)đồng dạng \(\Delta DEF\)và \(\frac{^SABC}{^SDEF}=\frac{4}{9}\). Tỉ số đồng dạng của chúng là:

A.3                               B.\(\frac{1}{2}\)                                  C.\(\frac{1}{4}\)                                   D.\(\frac{2}{3}\)

Câu 5:Cho \(\Delta ABC\)đồng dạng \(\Delta MNP\)sao cho \(\frac{^SABC}{^SMNP}=9\). Ta có:

A.\(\frac{AB}{MN}=9\)                                B.\(\frac{AB}{MN}=\frac{1}{9}\)                         C.\(\frac{AB}{MN}=3\)                             D.\(\frac{AB}{MN}=\frac{1}{3}\)                                

2
20 tháng 5 2019

Câu 2: D 22,5

Câu 3:C Hai tam giác vuông cân thì luôn đồng dạng với nhau

Câu 4: D \(\frac{2}{3}\)

Câu 5: C \(\frac{AB}{MN}=3\)

20 tháng 5 2019

Câu 1 đề bài sai

Trắc nghiệm1.\(\Delta A'B'C'\)~ \(\Delta ABC\)theo tỉ số đồng dạng k=\(\frac{3}{2}\).Gọi AM,A'M' lần lượt là các đường trung tuyến của \(\Delta ABC\)và \(\Delta A'B'C'\).Biết A'M'=15cm,độ dài AM là:A.6cm           B.10cm               C.12cm             D.22,5cm2.Chọn phát biểu đúng trong các phát biểu sau:A.Hai tam giác cân thì đồng dạng với nhauB.Hai tam giác đồng dạng thì bằng nhauC.Hai tam giác vuông...
Đọc tiếp

Trắc nghiệm

1.\(\Delta A'B'C'\)\(\Delta ABC\)theo tỉ số đồng dạng k=\(\frac{3}{2}\).Gọi AM,A'M' lần lượt là các đường trung tuyến của \(\Delta ABC\)và \(\Delta A'B'C'\).Biết A'M'=15cm,độ dài AM là:

A.6cm           B.10cm               C.12cm             D.22,5cm

2.Chọn phát biểu đúng trong các phát biểu sau:

A.Hai tam giác cân thì đồng dạng với nhau

B.Hai tam giác đồng dạng thì bằng nhau

C.Hai tam giác vuông cân thì đồng dạng với nhau

D.Hai tam giác vuông bất kì thì luôn đồng dạng

3.\(\Delta ABC\)\(\Delta DEF\)và \(\frac{S_{ABC}}{S_{DEF}}\)=\(\frac{4}{9}\).Tỉ số đồng dạng của chúng là:

A.3            B.\(\frac{1}{2}\)                  C.\(\frac{1}{4}\)            D.\(\frac{2}{3}\)

4.Cho \(\Delta ABC\)\(\Delta MNP\)sao cho \(\frac{S_{ABC}}{S_{MNP}}\)=9.Ta có:

A.\(\frac{AB}{MN}\)=9          B.\(\frac{AB}{MN}\)=\(\frac{1}{9}\)            C.\(\frac{AB}{MN}\)=3             D.\(\frac{AB}{MN}\)=\(\frac{1}{3}\)

0

Bài 1:

Để ΔABC=ΔDEF thì AB=EF; AC=DF

hoặc cũng có thể là BC=EF và \(\widehat{B}=\widehat{E}\)

Bài 2: 

a: Xét ΔABH vuông tại H và ΔA'B'H' vuông tại H' có

\(\widehat{B}=\widehat{B'}\)

Do đó: ΔABH\(\sim\)ΔA'B'H'

b: AH/A'H'=AB/A'B'=k

24 tháng 3 2020

Ta có

\(\Delta A'B'C'~\Delta A"B"C"\)theo tỉ số đồng dạng \(k_1\Rightarrow A'B'=k_1A"B"\)

\(\Delta A"B"C"~\Delta A'B'C\)theo tỉ số \(k_2=>A"B"=k_2A"B"=>AB=\frac{A"B"}{k_2}\)

từ đó suy ra

\(\frac{A'B'}{AB}=\frac{k_1A"B"}{\frac{A"B"}{k_2}}=k_1k_2\Leftrightarrow\Delta A'B'C~\Delta ABC\)theo tỉ số \(k_1k_2\)

30 tháng 4 2018

a)  Xét  \(\Delta HAC\)và   \(\Delta ABC\)có:

    \(\widehat{AHC}=\widehat{BAC}=90^0\)

    \(\widehat{C}\)  chung

suy ra:   \(\Delta HAC~\Delta ABC\)

b)   Áp dụng định lý Pytago vào tam giác vuông ABC 

      \(BC^2=AB^2+AC^2\)

\(\Rightarrow\) \(BC^2=12^2+16^2=400\)

\(\Leftrightarrow\)\(BC=\sqrt{400}=20\)cm

 \(\Delta ABC\) có  \(AD\)là phân giác  \(\widehat{BAC}\)

\(\Rightarrow\)\(\frac{DB}{AB}=\frac{DC}{AC}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

     \(\frac{DB}{AB}=\frac{DC}{AC}=\frac{DB+DC}{AB+AC}=\frac{20}{12+16}=\frac{5}{7}\)

suy ra:  \(\frac{DB}{AB}=\frac{5}{7}\)\(\Rightarrow\)\(DB=8\frac{4}{7}\)           

             \(\frac{DC}{AC}=\frac{5}{7}\)\(\Rightarrow\)\(DC=11\frac{3}{7}\)

c)   Xét  \(\Delta CED\)và    \(\Delta CAB\)có:

      \(\widehat{CED}=\widehat{CAB}=90^0\)

      \(\widehat{ECD}\) chung

suy ra:   \(\Delta CED~\Delta CAB\)

\(\Rightarrow\)\(\frac{CE}{AC}=\frac{ED}{AB}\)

\(\Rightarrow\)\(CE.AB=AC.ED\)  (đpcm)

1 tháng 5 2018

thực ra mk cần nhất là ý d còn lại mk tự lm theo cách của mk rùi có bn nào tốt bụng giúp mk vs