Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = a + 4b; B = 10a + b
Xét hiệu: 10A - B = 10.(a + 4b) - (10a + b)
= 10a + 40b - 10a - b
= 39b
Do A chia hết cho 13 nên 10A chia hết cho 13 mà 39b chia hết cho 13
Do đó, B chia hết cho 13 hay 10a + b chia hết cho 13 (đpcm)
Câu hỏi của Nguyễn Thành Long - Toán lớp 6 - Học toán với OnlineMath nhấn vào dòng chữ xanh
Ta đã biết: Các số nguyên dương cộng nhau sẽ ra số nguyên dương
Ta có:
1: abc + a = (-625) (abc và a đều là số nguyên dương) => Không có trường hợp nào thỏa mãn điều kiện trên
2: abc + b = (-633) (abc và b đều là số nguyên dương) => Không có trường hợp nào thỏa mãn điều kiện trên
3: abc + c = (-597) (abc và c đều là số nguyên dương) => Không có trường hợp nào thỏa mãn điều kiện trên
Giả sử có tồn tại các số nguyên a,b,c thỏa mãn điều kiện của đề bài .Khi đó ta có :
a(bc+1)=-625
b(ac+1)=-633
c(ab+1)=-597
Nói riêng a,b,c là các số lẻ.Vậy tích abc cũng phải là một số lẻ và do đó -625=abc+a là một số chẵn (vô lí).Vậy không tồn tại các số nguyên a,b,c thỏa mãn đề bài.
Bài này mình làm rồi :
Giả sử tồn tại các số nguyên a; b; c thỏa mãn:
a.b.c + a = -625 ; a.b.c + b = -633 và a.b.c + c = -597
Xét từng điều kiện ta có:
a.b.c + a = a.(b.c + 1) = -625
a.b.c + b = b.(a.c + 1) = -633
a.b.c + c = c.(a.b + 1) = -597
Chỉ có hai số lẻ mới có tích là một số lẻ ⇒ a; b; c đều là số lẻ ⇒ a.b.c cũng là số lẻ.
Khi đó a.b.c + a là số chẵn, không thể bằng -625 (số lẻ)
Vậy không tồn tại các số nguyên a; b; c thỏa mãn điều kiện đề bài.
a) 2x+3y chia hết cho 17 => 4(2x+3y) chia hết cho 17
=> 8x+12y chia hết cho 17
Ta có : 8x+12y+9x+5y=17x+17y=17(x+y) chia hết cho 17
b) a+4b chia hết cho 13 => 3(a+4b) chia hết cho 13 => 3a+12b chia hết cho 13
=> (3a+12b)+(10a+b)=13a+13b=13(a+b) chia hết cho 13
c) 3a+2b chia hết cho 17 => 8(3a+2b) chia hết cho 17 => 24a+16b chia hết cho 17
Ta có : (24a+16b)+(10a+b)=34a+17b chia hết cho 17
Do \(\left(10a+b\right)⋮13\Rightarrow10a+b=13k\left(k\in N\right)\)
\(\Rightarrow b=13k-10a\)
\(\Rightarrow a+4b=a+4.\left(13k-10a\right)\)
\(=a+52k-40a\)
\(=52k-39a\)
\(=13\left(4k-3a\right)⋮13\)
Vậy \(\left(10a+b\right)⋮13\Rightarrow\left(a+4b\right)⋮13\)
ko phải dạng vừa đâu!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!