Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không biết vẽ hình hơ
nhưng biết cách làm
xét tam giác AA'B' vuông tại A
AA'= căn ( (a căn 3)2 - a2)=a*(3a2+1)
vậy V = a*(3a2 +1) * (1/2 )*( (căn 3 *a)/2) *a ( chiều cao * diện tích tam gaic1 abc )
b) thua
A B C B' C' A' E M
Từ giả thiết ta suy ra tam giác ABC là tam giác vuông cân tại B
Thể tích của khối lăng trụ là \(V_{ABC.A'B'C'}=AA'.BC=a\sqrt{2.}\frac{1}{2}a^2=\frac{\sqrt{2}}{2}a^3\)
Gọi E là trung điểm của BB'. Khi đó mặt phẳng (AME) song song với B'C nên khoảng cách giữa 2 đường thẳng AM, B'C bằng khoảng cách giữa B'C và mặt phẳng (AME)
Nhận thấy, khoảng cách từ B đến mặt phẳng (AME) bằng khoảng cách từ C đến mặt phẳng (AME)
Gọi h là khoảng cách từ B đến mặt phẳng (AME). Do đó tứ diện BAME có BA, BM, BE đôi một vuông góc với nhau nên :
\(\frac{1}{h^2}=\frac{1}{BA^2}+\frac{1}{BM^2}+\frac{1}{BE^2}\Rightarrow\frac{1}{h^2}=\frac{1}{a^2}+\frac{4}{a^2}+\frac{2}{a^2}=\frac{7}{a^2}\)
\(\Rightarrow h=\frac{a\sqrt{7}}{7}\)
Vậy khoảng cách giữa 2 đường thẳng B'C và AM bằng \(\frac{a\sqrt{7}}{7}\)
A B H C C' A' B'
Gọi H là trung điểm của cạnh BC. Suy ra :
\(\begin{cases}A'H\perp\left(ABC\right)\\AH=\frac{1}{2}BC=\frac{1}{2}\sqrt{a^2+3a^2}=a\end{cases}\)
Do đó : \(A'H^2=A'A^2-AH^2=3a^2=3a^2\Rightarrow A'H=a\sqrt{3}\)
Vậ \(V_{A'ABC}=\frac{1}{3}A'H.S_{\Delta ABC}=\frac{a^2}{2}\)
Trong tam giác vuông A'B'H ta có :
\(HB'=\sqrt{A'B'^2+A'H^2}=2a\) nên tam giác B'BH cân tại B'
Đặt \(\varphi\) là góc giữa 2 đường thẳng AA' và B'C' thì \(\varphi=\widehat{B'BH}\)
Vậy \(\cos\varphi=\frac{a}{2.2a}=\frac{1}{4}\)
Chọn C
\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.a.a\sqrt{3}=\dfrac{a^2\sqrt{3}}{2}\)
\(\Rightarrow V_{ABC}.A'B'C'=AA'.S_{ABC}=2a.\dfrac{a^2\sqrt{3}}{2}=a^3\sqrt{3}\)
Chọn A