Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoàng Phúc giải sai rồi. \(23^{2005}\) đồng dư 23 (mod 10) chỉ suy ra tận cùng là 3 thôi.
Câu 1: \(gcd\left(23,100\right)=1\) nên theo định lí Euler, \(23^{\phi\left(100\right)}=23^{40}\) đồng dư 1 (mod 100)
Lũy thừa 5 hai vế ta có \(23^{2000}\) đồng dư 1 (mod 100). Còn \(23^5\) đồng dư 43 (mod 100)
Vậy \(23^{2005}\) đồng dư 43 (mod 100) nên có chữ số hàng chục là 4.
Câu 2: \(23^3\) đồng dư 67 (mod 100) nên \(23^{2008}\) đồng dư \(43.67\) đồng dư 81 (mod 100)
Vậy số này có chữ số hàng chục là 81.
Câu 4: Bạn hãy thử chứng minh \(2011^{335}\) đồng dư 1 (mod 10000). Khi đó \(2011^{2010}\) cũng đồng dư 1 (mod 10000) và 4 chữ số tận cùng của số này sẽ là 0001.
Câu 3 đang bí. Sorry!
23^4 đồng dư 1 (mod10)
=>(23^4)^501 đồng dư 1 (mod10)
=>23^2004 đồng dư 1 (mod10)
=>23^2004.23 đồng dư 23 (mod10)
=>23^2005 đồng dư 23 (mod10)
Vậy c/s hàng chục của ... là 3
tương tự
coi nâng cao và pt toan 8 là bít dễ
chuyên đề tính chất chia hết của só ng
Tự làm chứ,,,,ai đi chép sách thế hả.....Giống tui z....Mỗi tội lười ,,,mệt lém @@@
74=2401 tận cùng là 01 mà 2401n luôn tận cùng là 01
=>72012=74.503=2401503 tận cùng là 01
73 tận cùng là 43
=> 72015 tận cùng là 43
a. Để B nhận giá trị nguyên thì n - 3 phải là ước của 5
=> n - 3 ∈ {-1; 1; -5; 5} => n ∈ { -2 ; 2; 4; 8}
Đối chiếu đ/k ta được n ∈ {- 2; 2; 4; 8}
b. Với x = 2, ta có: 22 + 117 = y2 → y2 = 121 → y = 11 (là số nguyên tố)
* Với x > 2, mà x là số nguyên tố nên x lẻ y2 = x2 + 117 là số chẵn
=> y là số chẵn
kết hợp với y là số nguyên tố nên y = 2 (loại)
Vậy x = 2; y = 11.
c. Ta có: 1030= 100010 và 2100 =102410. Suy ra: 1030 < 2100 (1)
Lại có: 2100= 231.263.26 = 231.5127.64 và 1031=231.528.53=231.6257.125
Nên: 2100< 1031 (2). Từ (1) và(2) suy ra số 2100 viết trong hệ thập phân có 31 chữ số.
a)Để B thuộc Z
=>5 chia hết n-3
=>n-3 thuộc Ư(5)={1;-1;5;-5}
=>n thuộc {4;2;8;-2}
Ta có:
\(2^{100}=\left(2^{20}\right)^5=\left(...576\right)^5=\left(...576\right)\)
Vậy 3 chữ số tân cùng là 576
\(\sqrt{x+1}-\sqrt{y+1}+\sqrt{9-y}-\sqrt{9-x}=0\)Liên hợp có x-y=0
thay vào PT đầu
\(\sqrt{x+1}+\sqrt{9-x}=4\)
BP
\(\sqrt{\left(x+1\right)\left(9-x\right)}=3\)
(x+1)((9-x)=9=> x=0 hoạc x=8
(xy)=(0,0);(8,8)
Câu 1: Vì 3411 viết được dưới dạng 4n+3 mà chữ số tận cùng của số 7 là 7
nên theo cách tìm chữ số tận cùng: số 73411 có chữ số tận cùng là 3
Câu 2:
Số 2011 có tận cùng là chữ số 1 nên khi nâng lên luỹ thừa thì chữ số tận cùng vẫn là 1
Câu 3:
Số 5 khi nâng lên luỹ thừa cũng có chữ số tận cùng là 5
Câu 4:
Số 10110 có chữ số tận cùng là 1
Số 10211 có chữ số tận cùng là 8
Số 10312 có chữ số tận cùng là 1
Số 10413 có chữ số tận cùng là 4
Số 10514 có chữ số tận cùng là 5
Tổng đó có chữ số tận cùng là: 1+8+1+4+5=19
Vậy chữ số tận cùng là