Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
DO đó: QP là đường trung bình của ΔADC
Suy ra: QP//AC và QP=AC/2(2)
Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔBAD
Suy ra: MQ=BD/2=AC/2(3)
Từ (1), (2) và (3) suy ra MNPQ là hình thoi
Xét tam giác ABD có:
M là trung điểm của AB (gt).
Q là trung điểm của DA (gt).
=> MQ là đường trung bình.
=> 2MQ = BD (Tính chất đường trung bình). (1)
Xét tam giác ABC có:
M là trung điểm của AB (gt).
N là trung điểm của BC (gt).
=> MN là đường trung bình.
=> 2MN = AC (Tính chất đường trung bình). (2)
Xét tam giác ADC có:
Q là trung điểm của DA (gt).
P là trung điểm DC (gt).
=> PQ là đường trung bình.
=> 2PQ = AC (Tính chất đường trung bình) (3)
Xét tam giác BCD có:
N là trung điểm của BC (gt).
P là trung điểm của DC (gt).
=> PN là đường trung bình.
=> 2PN = BD (Tính chất đường trung bình). (4)
Lại có: AC = BD (gt). (5)
Từ (1) (2) (3) (4) (5) => MN = NP = PQ = MQ.
=> MNPQ là hình thoi.
Xét ΔABC có
M là trung điểm của BA
N là trung điểm của BC
Do đó: MN là đường trung bình
=>MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trungb bình
=>QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
Xét ΔBAC có M,N lần lượt là trung điểm của BA,BC
=>MN là đường trung bình
=>MN//AC và MN=AC/2
Xét ΔDAC có
Q,P lần lượt là trung điểm của DA,DC
=>QP là đường trung bình
=>QP//AC và QP=AC/2
=>MN//PQ và MN=PQ
Xét ΔABD có AM/AB=AQ/AD
nên MQ//BD
=>MQ vuông góc AC
mà MN//AC
nên MQ vuông góc MN
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
Do đó: MNPQ là hình bình hành
mà góc QMN=90 độ
nên MNPQ là hình chữ nhật
Xét ΔBAD có
M,Q lần lượt là tđiểm của AB và AD
nên MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N,P lần lượt là trung điểm của CB và CD
nên NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MNPQ là hình bình hành(5)
Xét ΔABC có
M,N lần lượt là trung điểm của BA và BC
nên MN là đường trung bình
=>MN=AC/2=BD/2=MQ(3) và MN//AC
=>MN vuông góc với MQ(4)
Từ (3), (4)và (5) suy ra MNPQ là hình vuông
a: Xét ΔBAD có
M,Q lần lượt là tđiểm của AB và AD
nên MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N,P lần lượt là trung điểm của CB và CD
nên NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MNPQ là hình bình hành(5)
Xét ΔABC có
M,N lần lượt là trung điểm của BA và BC
nên MN là đường trung bình
=>MN=AC/2=BD/2=MQ(3) và MN//AC
=>MN vuông góc với MQ(4)
Từ (3), (4)và (5) suy ra MNPQ là hình vuông
a: Xét ΔABD có AM/AB=AQ/AD
nên MQ//BD và MQ=BD/2
Xét ΔCBD có CN/CB=CP/CD
nên NP//BD và NP=BD/2
=>MQ//PN và MQ=PN
=>MNPQ là hình bình hành
Xét ΔBAC có BM/BA=BN/BC
nên MN//AC và MN=AC/2
=>MN vuông góc với NP
=>MNPQ là hình chữ nhật
b: Để MNPQ là hình vuông thì MN=NP
=>AC=BD
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của DA
P là trung điểm của DC
Do đó: QP là đường trung bình của ΔADC
Suy ra: QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MNPQ là hbh